Suppr超能文献

采用质子核磁共振技术对唾液进行代谢表型分析,以寻找牙周炎的潜在生物标志物。

Metabolic phenotyping of saliva to identify possible biomarkers of periodontitis using proton nuclear magnetic resonance.

机构信息

Department of Chemistry and Chemistry Institute for Functional Materials, Institute for Plastic Information and Energy Materials, Pusan National University, Busan, Republic of Korea.

Department of Periodontology, Institute of Translational Dental Sciences, School of Dentistry, Pusan National University, Yangsan, Republic of Korea.

出版信息

J Clin Periodontol. 2021 Sep;48(9):1240-1249. doi: 10.1111/jcpe.13516. Epub 2021 Jul 16.

Abstract

AIM

The aim of this study was to propose biomarker candidates for periodontitis via untargeted metabolomics analysis.

MATERIALS AND METHODS

Metabolic profiling was performed using saliva samples from 92 healthy controls (H) and 129 periodontitis patients (P) in the discovery cohort using proton nuclear magnetic resonance spectroscopy. Random forest was applied to identify metabolites that significantly differentiated the control group from the periodontitis group. Candidate metabolites were then validated in an independent validation cohort.

RESULTS

In the discovery set, the metabolic profiles of the P group were clearly separated from those of the H group. A total of 31 metabolites were identified in saliva, and 7 metabolites were selected as candidate biomarkers. These metabolites were further confirmed in the validation set. Ethanol, taurine, isovalerate, butyrate, and glucose were finally confirmed as biomarkers. Furthermore, the biomarker panel showed more than 0.9 of the area under curve value in both discovery and validation sets, indicating that panels were more effective than individual metabolites for diagnosing periodontitis.

CONCLUSIONS

We identified five metabolite biomarkers that discriminated patients with periodontitis from healthy controls in two independent cohorts. These biomarkers have the potential for periodontal screening, detection of periodontitis, and monitoring of the outcome of periodontal therapy.

摘要

目的

本研究旨在通过非靶向代谢组学分析,提出牙周炎的生物标志物候选物。

材料与方法

采用质子核磁共振波谱法对 92 名健康对照者(H)和 129 名牙周炎患者(P)的唾液样本进行代谢谱分析。采用随机森林法识别可明显区分对照组和牙周炎组的代谢物。然后在独立验证队列中对候选代谢物进行验证。

结果

在发现集中,P 组的代谢谱明显与 H 组分离。在唾液中鉴定出 31 种代谢物,其中 7 种代谢物被选为候选生物标志物。这些代谢物在验证集中得到了进一步证实。最终确认乙醇、牛磺酸、异戊酸、丁酸和葡萄糖为生物标志物。此外,该生物标志物组合在发现集和验证集中的曲线下面积均大于 0.9,表明与单个代谢物相比,标志物组合在诊断牙周炎方面更有效。

结论

我们在两个独立队列中鉴定出 5 种可区分牙周炎患者和健康对照者的代谢物生物标志物。这些生物标志物有望用于牙周病的筛查、牙周炎的检测和牙周治疗效果的监测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验