Yan Yumeng, Sharma Praveen, Suvan Jeanie, D'Aiuto Francesco
Periodontology Unit, UCL Eastman Dental Institute, London, UK.
Periodontal Research Group, School of Dentistry, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK.
J Clin Periodontol. 2025 Oct;52(10):1466-1477. doi: 10.1111/jcpe.70000. Epub 2025 Jul 23.
The relationship between oral and systemic inflammation has profound implications for understanding the broader health impacts of periodontitis. The aim of this study was to (a) explore the association between periodontal inflammation and markers of systemic inflammation and metabolic health, and (b) preliminarily assess periodontal status based on systemic health indicators using machine learning techniques.
Data from a cross-sectional cohort (N = 667) were modelled (simple/multiple linear, fractional polynomial, logistic and random forest regression) to examine the association between systemic and periodontal measures. Three classifiers-random forest (RF), support vector machine (SVM) and gradient boosting (GB)-were used using periodontal inflamed surface area (PISA) and demographic and anthropometric variables (age, gender, ethnicity, body mass index [BMI] and smoking habits) as inputs to predict systemic inflammation (defined using serum C-reactive protein [CRP] levels). The best performing classification models (evaluated using area under the curve, AUC analyses) were validated using a second nationally representative dataset from the National Health and Nutrition Examination Surveys (NHANES) 2001-2002 and 2003-2004 combined datasets (N = 2288). Next, RF, SVM and GB were employed incorporating a set of systemic parameters (including serum CRP and lipid profiles) to predict the diagnosis of periodontitis. The best performing classification models were then validated using the NHANES 2009-2010 (N = 664) dataset.
A nonlinear trend of CRP levels and PISA was confirmed by fractional polynomial regression (p = 0.008). Further, multiple linear regression analyses (adjusted for age, gender, ethnicity, BMI and smoking habits) confirmed a statistically significant relationship between log-transformed CRP levels and PISA (p < 0.0001). Logistic regression confirmed a relationship between PISA and low-density lipoprotein (LDL) in both crude and adjusted models. Among the classification models, SVM showed the highest performance in distinguishing CRP < 2 mg/L from CRP ≥ 2 mg/L (AUC = 0.71). The SVM model was successfully replicated in the NHANES 2001-2002 and 2003-2004 waves (AUC = 0.74). Prediction of periodontitis status (case vs. control) based on systemic indicators using the SVM model achieved the best performance with a mean AUC of 0.82. This was partially confirmed after external validation using the 2009-2010 NHANES dataset (AUC of 0.72).
This study confirmed a consistent relationship between measures of cumulative periodontal inflammation and systemic inflammation through machine learning models. A predictive model incorporating systemic health parameters helped in identifying a case with periodontitis. Both models have potential for use in primary healthcare settings, including screening programmes, as providing confirmation of the bidirectional link between periodontitis and systemic health.
口腔炎症与全身炎症之间的关系对于理解牙周炎对更广泛健康的影响具有深远意义。本研究的目的是:(a)探讨牙周炎症与全身炎症标志物及代谢健康之间的关联;(b)使用机器学习技术基于全身健康指标初步评估牙周状况。
对一个横断面队列(N = 667)的数据进行建模(简单/多元线性、分数多项式、逻辑回归和随机森林回归),以检验全身指标与牙周指标之间的关联。使用牙周炎症表面积(PISA)以及人口统计学和人体测量学变量(年龄、性别、种族、体重指数[BMI]和吸烟习惯)作为输入,采用三种分类器——随机森林(RF)、支持向量机(SVM)和梯度提升(GB)——来预测全身炎症(使用血清C反应蛋白[CRP]水平定义)。使用曲线下面积(AUC分析)评估表现最佳的分类模型,并使用来自2001 - 2002年和2003 - 2004年国家健康与营养检查调查(NHANES)的第二个具有全国代表性的数据集(N = 2288)进行验证。接下来,采用RF、SVM和GB并纳入一组全身参数(包括血清CRP和血脂谱)来预测牙周炎的诊断。然后使用2009 - 2010年NHANES数据集(N = 664)对表现最佳的分类模型进行验证。
分数多项式回归证实了CRP水平与PISA之间的非线性趋势(p = 0.008)。此外,多元线性回归分析(对年龄、性别、种族、BMI和吸烟习惯进行校正)证实了对数转换后的CRP水平与PISA之间存在统计学显著关系(p < 0.0001)。逻辑回归在未校正和校正模型中均证实了PISA与低密度脂蛋白(LDL)之间的关系。在分类模型中,SVM在区分CRP < 2 mg/L和CRP≥2 mg/L方面表现最佳(AUC = 0.71)。SVM模型在2001 - 2002年和2003 - 2004年NHANES调查中成功复制(AUC = 0.74)。使用SVM模型基于全身指标预测牙周炎状态(病例与对照)表现最佳,平均AUC为0.82。使用2009 - 2010年NHANES数据集进行外部验证后部分得到证实(AUC为0.72)。
本研究通过机器学习模型证实了累积牙周炎症指标与全身炎症之间的一致关系。纳入全身健康参数的预测模型有助于识别牙周炎病例。这两种模型都有潜力用于初级医疗保健环境,包括筛查项目,因为它们证实了牙周炎与全身健康之间的双向联系。