Department of Civil & Mineral Engineering, University of Toronto, Toronto, Ontario, Canada.
Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
J Biophotonics. 2021 Oct;14(10):e202100135. doi: 10.1002/jbio.202100135. Epub 2021 Jul 11.
The study presented a Monte Carlo simulation of light transport in eight commonly used filtered facepiece respirators (FFRs) to assess the efficacy of UV at 254 nm for the inactivation of SARS-CoV-2. The results showed different fluence rates across the thickness of the eight different FFRs, implying that some FFR models may be more treatable than others, with the following order being (from most to least treatable): models 1512, 9105s, 1805, 9210, 1870+, 8210, 8110s and 1860, for single side illumination. The model predictions did not coincide well with some previously reported experimental data on virus inactivation when applied to FFR surfaces. The simulations predicted that FFRs should experience higher log reductions (>>6-log) than those observed experimentally (often limited to ~5-log). Possible explanations are virus shielding by aggregation or soiling, and a lack of the Monte Carlo simulations considering near-field scattering effects that can create small, localized regions of low UV photon probability on the surface of the fiber material. If the latter is the main cause in limiting practical UV viral decontamination, improvement might be achieved by exposing the FFR to UV isotropically from all directions, such as by varying the UV source to the FFR surface angle during treatment.
该研究通过蒙特卡罗模拟对 8 种常用过滤式面罩(FFR)中的光传输进行了研究,以评估 254nm 紫外线对 SARS-CoV-2 灭活的效果。结果表明,8 种不同 FFR 的厚度上存在不同的辐照率,这意味着某些 FFR 模型可能比其他模型更易于处理,以下是(从最容易处理到最不容易处理)的排序:单侧照明时,模型 1512、9105s、1805、9210、1870+、8210、8110s 和 1860。当将模型预测应用于 FFR 表面的病毒灭活实验数据时,与一些先前报道的实验数据并不吻合。模拟预测 FFR 应该经历比实验观察到的更高的对数减少(>>6-log)(通常限于~5-log)。可能的解释是病毒聚集或污染造成的屏蔽,以及缺乏考虑近场散射效应的蒙特卡罗模拟,这些效应会在纤维材料表面产生低紫外线光子概率的小局部区域。如果后者是限制实际紫外线病毒消毒的主要原因,可以通过从各个方向对 FFR 进行各向同性的紫外线照射来提高效率,例如在处理过程中改变紫外线源到 FFR 表面的角度。