Suppr超能文献

CyDisCo公司生产功能性重组严重急性呼吸综合征冠状病毒2刺突受体结合结构域。

CyDisCo production of functional recombinant SARS-CoV-2 spike receptor binding domain.

作者信息

Prahlad Janani, Struble Lucas R, Lutz William E, Wallin Savanna A, Khurana Surender, Schnaubelt Andy, Broadhurst Mara J, Bayles Kenneth W, Borgstahl Gloria E O

机构信息

Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA.

Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA.

出版信息

Protein Sci. 2021 Sep;30(9):1983-1990. doi: 10.1002/pro.4152. Epub 2021 Jul 16.

Abstract

The COVID-19 pandemic caused by SARS-CoV-2 has applied significant pressure on overtaxed healthcare around the world, underscoring the urgent need for rapid diagnosis and treatment. We have developed a bacterial strategy for the expression and purification of a SARS-CoV-2 spike protein receptor binding domain (RBD) that includes the SD1 domain. Bacterial cytoplasm is a reductive environment, which is problematic when the recombinant protein of interest requires complicated folding and/or processing. The use of the CyDisCo system (cytoplasmic disulfide bond formation in E. coli) bypasses this issue by pre-expressing a sulfhydryl oxidase and a disulfide isomerase, allowing the recombinant protein to be correctly folded with disulfide bonds for protein integrity and functionality. We show that it is possible to quickly and inexpensively produce an active RBD in bacteria that is capable of recognizing and binding to the ACE2 (angiotensin-converting enzyme) receptor as well as antibodies in COVID-19 patient sera.

摘要

由严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引起的2019冠状病毒病大流行给全球负担过重的医疗系统带来了巨大压力,凸显了快速诊断和治疗的迫切需求。我们开发了一种细菌策略,用于表达和纯化包含SD1结构域的SARS-CoV-2刺突蛋白受体结合域(RBD)。细菌细胞质是一个还原环境,当目标重组蛋白需要复杂的折叠和/或加工时,这会带来问题。使用CyDisCo系统(大肠杆菌细胞质中二硫键形成)通过预表达一种巯基氧化酶和一种二硫键异构酶绕过了这个问题,使重组蛋白能够通过二硫键正确折叠,以保证蛋白质的完整性和功能。我们表明,有可能在细菌中快速且低成本地生产出一种活性RBD,它能够识别并结合血管紧张素转换酶2(ACE2)受体以及新冠患者血清中的抗体。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验