Suppr超能文献

基于铜(100)上原子级机器学习势的卤化物诱导台阶刻面与溶解能学

Halide-induced Step Faceting and Dissolution Energetics from Atomistic Machine Learned Potentials on Cu(100).

作者信息

Groenenboom Mitchell C, Moffat Thomas P, Schwarz Kathleen A

机构信息

Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899-8520 USA.

出版信息

J Phys Chem C Nanomater Interfaces. 2020;124(23). doi: 10.1021/acs.jpcc.0c00683.

Abstract

Adsorbates impact the surface stability and reactivity of metallic electrodes, affecting the corrosion, dissolution, and deposition behavior. Here, we use density functional theory (DFT) and DFT-based Behler-Parrinello neural networks (BPNN) to investigate the geometries, surface formation energies, and atom removal energies of stepped and kinked surfaces vicinal to Cu(100) with a c(2×2) Cl adlayer. DFT calculations indicate that the stable structures for the adsorbate-free vicinal surfaces favor steps with <110> orientation, while the addition of the c(2×2) Cl adlayer leads to <100> step facets, in agreement with scanning tunneling microscopy (STM) observations. The BPNN calculations produce energies in good agreement with DFT results (root mean square error of 1.3 meV/atom for a randomly chosen set of structures excluded from the training set). We draw three conclusions from the BPNN calculations. First, Cl on the upper <100> step edges occupies the three fold hollow sites (as opposed to the four-fold sites on the terraces), congruent with deviations of the STM height profile for the adsorbate at the upper step edge. Second, disruptions in the continuity of the halide overlayer at the steps result in significant long-range step-step interactions. Third, anisotropic metal dissolution and deposition energetics arise from phase shifts of the c(2×2) adlayer at orthogonal <100> steps. This DFT-BPNN approach offers an effective strategy for tackling large-scale surface structure challenges with atomic-level accuracy.

摘要

吸附质会影响金属电极的表面稳定性和反应活性,进而影响其腐蚀、溶解和沉积行为。在此,我们使用密度泛函理论(DFT)和基于DFT的贝叶斯-帕里尼罗神经网络(BPNN)来研究与具有c(2×2) Cl吸附层的Cu(100)相邻的阶梯状和扭结状表面的几何结构、表面形成能和原子去除能。DFT计算表明,无吸附质的相邻表面的稳定结构有利于<110>取向的台阶,而添加c(2×2) Cl吸附层会导致<100>台阶面,这与扫描隧道显微镜(STM)的观察结果一致。BPNN计算得出的能量与DFT结果高度吻合(对于从训练集中排除的一组随机选择的结构,均方根误差为1.3 meV/原子)。我们从BPNN计算中得出三个结论。第一,上部<100>台阶边缘上的Cl占据三重空心位点(与平台上的四重位点相反),这与上部台阶边缘处吸附质的STM高度轮廓偏差一致。第二,台阶处卤化物覆盖层连续性的破坏会导致显著的长程台阶-台阶相互作用。第三,各向异性的金属溶解和沉积能量学源于正交<100>台阶处c(2×2)吸附层的相移。这种DFT-BPNN方法为以原子级精度应对大规模表面结构挑战提供了一种有效策略。

相似文献

1
Halide-induced Step Faceting and Dissolution Energetics from Atomistic Machine Learned Potentials on Cu(100).
J Phys Chem C Nanomater Interfaces. 2020;124(23). doi: 10.1021/acs.jpcc.0c00683.
2
SHINERS Study of Chloride Order-Disorder Phase Transition and Solvation of Cu(100).
J Am Chem Soc. 2024 Jan 17;146(2):1588-1602. doi: 10.1021/jacs.3c11812. Epub 2024 Jan 3.
3
Step-mediated anisotropic adsorption and condensation of tert-butylamine on Cu(111).
Chemphyschem. 2010 Feb 1;11(2):379-83. doi: 10.1002/cphc.200900595.
4
Voltammetric surface dealloying of Pt bimetallic nanoparticles: an experimental and DFT computational analysis.
Phys Chem Chem Phys. 2008 Jul 7;10(25):3670-83. doi: 10.1039/b803717e. Epub 2008 May 27.
6
Nanoscale-faceting of metal surfaces induced by adsorbates.
Phys Chem Chem Phys. 2010 Aug 21;12(31):8669-84. doi: 10.1039/c000766h. Epub 2010 Jun 15.
7
Non-Monotonic Variation of Potential-Dependent Surface Diffusion at Electrochemical Interfaces in the Presence of Coadsorbates.
Angew Chem Int Ed Engl. 2025 Mar 3;64(10):e202419390. doi: 10.1002/anie.202419390. Epub 2025 Feb 11.
8
Atomic-Scale Imaging of the Surface Dipole Distribution of Stepped Surfaces.
J Phys Chem Lett. 2016 Feb 4;7(3):426-30. doi: 10.1021/acs.jpclett.5b02650. Epub 2016 Jan 15.
9
Step-Edge Assisted Direct Linear Alkane Coupling.
Chemistry. 2017 May 2;23(25):6185-6189. doi: 10.1002/chem.201605744. Epub 2017 Jan 25.

引用本文的文献

1
SHINERS Study of Chloride Order-Disorder Phase Transition and Solvation of Cu(100).
J Am Chem Soc. 2024 Jan 17;146(2):1588-1602. doi: 10.1021/jacs.3c11812. Epub 2024 Jan 3.
2
Improving the Accuracy of Atomistic Simulations of the Electrochemical Interface.
Chem Rev. 2022 Jun 22;122(12):10651-10674. doi: 10.1021/acs.chemrev.1c00800. Epub 2022 May 6.
3
Resolving the Geometry/Charge Puzzle of the c(2 × 2)-Cl Cu(100) Electrode.
J Phys Chem Lett. 2021 Jan 14;12(1):440-446. doi: 10.1021/acs.jpclett.0c03115. Epub 2020 Dec 27.

本文引用的文献

1
Incorporating long-range physics in atomic-scale machine learning.
J Chem Phys. 2019 Nov 28;151(20):204105. doi: 10.1063/1.5128375.
2
Parallel Multistream Training of High-Dimensional Neural Network Potentials.
J Chem Theory Comput. 2019 May 14;15(5):3075-3092. doi: 10.1021/acs.jctc.8b01092. Epub 2019 Apr 29.
3
One-dimensional two-dimensional proton transport processes at solid-liquid zinc-oxide-water interfaces.
Chem Sci. 2018 Nov 5;10(4):1232-1243. doi: 10.1039/c8sc03033b. eCollection 2019 Jan 28.
4
Thermodynamic Overpotentials and Nucleation Rates for Electrodeposition on Metal Anodes.
ACS Appl Mater Interfaces. 2019 Feb 27;11(8):7954-7964. doi: 10.1021/acsami.8b19787. Epub 2019 Feb 12.
5
Library-Based LAMMPS Implementation of High-Dimensional Neural Network Potentials.
J Chem Theory Comput. 2019 Mar 12;15(3):1827-1840. doi: 10.1021/acs.jctc.8b00770. Epub 2019 Feb 7.
6
The Many "Facets" of Halide Ions in the Chemistry of Colloidal Inorganic Nanocrystals.
Chem Rev. 2018 Aug 22;118(16):7804-7864. doi: 10.1021/acs.chemrev.8b00158. Epub 2018 Jul 31.
7
wACSF-Weighted atom-centered symmetry functions as descriptors in machine learning potentials.
J Chem Phys. 2018 Jun 28;148(24):241709. doi: 10.1063/1.5019667.
8
Advanced capabilities for materials modelling with Quantum ESPRESSO.
J Phys Condens Matter. 2017 Nov 22;29(46):465901. doi: 10.1088/1361-648X/aa8f79. Epub 2017 Oct 24.
9
Atomic level characterization in corrosion studies.
Philos Trans A Math Phys Eng Sci. 2017 Jul 28;375(2098). doi: 10.1098/rsta.2016.0414.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验