Groenenboom Mitchell C, Moffat Thomas P, Schwarz Kathleen A
Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899-8520 USA.
J Phys Chem C Nanomater Interfaces. 2020;124(23). doi: 10.1021/acs.jpcc.0c00683.
Adsorbates impact the surface stability and reactivity of metallic electrodes, affecting the corrosion, dissolution, and deposition behavior. Here, we use density functional theory (DFT) and DFT-based Behler-Parrinello neural networks (BPNN) to investigate the geometries, surface formation energies, and atom removal energies of stepped and kinked surfaces vicinal to Cu(100) with a c(2×2) Cl adlayer. DFT calculations indicate that the stable structures for the adsorbate-free vicinal surfaces favor steps with <110> orientation, while the addition of the c(2×2) Cl adlayer leads to <100> step facets, in agreement with scanning tunneling microscopy (STM) observations. The BPNN calculations produce energies in good agreement with DFT results (root mean square error of 1.3 meV/atom for a randomly chosen set of structures excluded from the training set). We draw three conclusions from the BPNN calculations. First, Cl on the upper <100> step edges occupies the three fold hollow sites (as opposed to the four-fold sites on the terraces), congruent with deviations of the STM height profile for the adsorbate at the upper step edge. Second, disruptions in the continuity of the halide overlayer at the steps result in significant long-range step-step interactions. Third, anisotropic metal dissolution and deposition energetics arise from phase shifts of the c(2×2) adlayer at orthogonal <100> steps. This DFT-BPNN approach offers an effective strategy for tackling large-scale surface structure challenges with atomic-level accuracy.
吸附质会影响金属电极的表面稳定性和反应活性,进而影响其腐蚀、溶解和沉积行为。在此,我们使用密度泛函理论(DFT)和基于DFT的贝叶斯-帕里尼罗神经网络(BPNN)来研究与具有c(2×2) Cl吸附层的Cu(100)相邻的阶梯状和扭结状表面的几何结构、表面形成能和原子去除能。DFT计算表明,无吸附质的相邻表面的稳定结构有利于<110>取向的台阶,而添加c(2×2) Cl吸附层会导致<100>台阶面,这与扫描隧道显微镜(STM)的观察结果一致。BPNN计算得出的能量与DFT结果高度吻合(对于从训练集中排除的一组随机选择的结构,均方根误差为1.3 meV/原子)。我们从BPNN计算中得出三个结论。第一,上部<100>台阶边缘上的Cl占据三重空心位点(与平台上的四重位点相反),这与上部台阶边缘处吸附质的STM高度轮廓偏差一致。第二,台阶处卤化物覆盖层连续性的破坏会导致显著的长程台阶-台阶相互作用。第三,各向异性的金属溶解和沉积能量学源于正交<100>台阶处c(2×2)吸附层的相移。这种DFT-BPNN方法为以原子级精度应对大规模表面结构挑战提供了一种有效策略。