Suppr超能文献

心脏线粒体的睡眠/觉醒钙动力学、呼吸功能和 ROS 产生。

Sleep/wake calcium dynamics, respiratory function, and ROS production in cardiac mitochondria.

机构信息

Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt.

57357 Children's Cancer Hospital, Basic Research Department, Cairo, Egypt.

出版信息

J Adv Res. 2021 Jan 12;31:35-47. doi: 10.1016/j.jare.2021.01.006. eCollection 2021 Jul.

Abstract

INTRODUCTION

Incidents of myocardial infarction and sudden cardiac arrest vary with time of the day, but the mechanism for this effect is not clear. We hypothesized that diurnal changes in the ability of cardiac mitochondria to control calcium homeostasis dictate vulnerability to cardiovascular events.

OBJECTIVES

Here we investigate mitochondrial calcium dynamics, respiratory function, and reactive oxygen species (ROS) production in mouse heart during different phases of wake versus sleep periods.

METHODS

We assessed time-of-the-day dependence of calcium retention capacity of isolated heart mitochondria from young male C57BL6 mice. Rhythmicity of mitochondrial-dependent oxygen consumption, ROS production and transmembrane potential in homogenates were explored using the Oroboros O2k Station equipped with a fluorescence detection module. Changes in expression of essential clock and calcium dynamics genes/proteins were also determined at sleep versus wake time points.

RESULTS

Our results demonstrate that cardiac mitochondria exhibit higher calcium retention capacity and higher rates of calcium uptake during sleep period. This was associated with higher expression of clock gene , lower expression of , greater expression of gene (mitochondrial calcium uptake 1), and lower expression of the mitochondrial transition pore regulator gene . Protein levels of mitochondrial calcium uniporter (MCU), MICU2, and sodium/calcium exchanger (NCLX) were also higher at sleep onset relative to wake period. While complex I and II-dependent oxygen utilization and transmembrane potential of cardiac mitochondria were lower during sleep, ROS production was increased presumably due to mitochondrial calcium sequestration.

CONCLUSIONS

Taken together, our results indicate that retaining mitochondrial calcium in the heart during sleep dissipates membrane potential, slows respiratory activities, and increases ROS levels, which may contribute to increased vulnerability to cardiac stress during sleep-wake transition. This pronounced daily oscillations in mitochondrial functions pertaining to stress vulnerability may at least in part explain diurnal prevalence of cardiac pathologies.

摘要

简介

心肌梗死和心搏骤停的事件随一天中的时间而变化,但这种效应的机制尚不清楚。我们假设心脏线粒体控制钙离子稳态的能力的昼夜变化决定了对心血管事件的易感性。

目的

本研究旨在研究不同觉醒和睡眠阶段小鼠心脏中线粒体钙离子动力学、呼吸功能和活性氧(ROS)产生的变化。

方法

我们评估了来自年轻雄性 C57BL6 小鼠的分离心脏线粒体钙离子保留能力的昼夜时间依赖性。使用配备荧光检测模块的 Oroboros O2k 工作站,探索了线粒体依赖性耗氧量、ROS 产生和跨膜电位的节律性。还在睡眠与觉醒时间点确定了基本时钟和钙动力学基因/蛋白的表达变化。

结果

我们的结果表明,心脏线粒体在睡眠期间表现出更高的钙离子保留能力和更高的钙离子摄取率。这与时钟基因的表达降低、基因的表达增加(线粒体钙离子摄取 1)和线粒体过渡孔调节剂基因的表达降低有关。线粒体钙单向转运蛋白(MCU)、MICU2 和钠/钙交换蛋白(NCLX)的蛋白水平在睡眠开始时也高于觉醒期。虽然心脏线粒体复合物 I 和 II 依赖性耗氧量和跨膜电位在睡眠期间较低,但 ROS 产生增加,可能是由于线粒体钙离子摄取。

结论

综上所述,我们的结果表明,在睡眠期间保留心脏中线粒体钙离子会耗散膜电位、减缓呼吸活动并增加 ROS 水平,这可能导致睡眠-觉醒转换期间心脏应激的易感性增加。这种与应激易感性相关的线粒体功能的明显昼夜波动至少部分解释了心脏病变的昼夜流行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/add4/8240107/ad94bd1eee3c/ga1.jpg

相似文献

1
Sleep/wake calcium dynamics, respiratory function, and ROS production in cardiac mitochondria.
J Adv Res. 2021 Jan 12;31:35-47. doi: 10.1016/j.jare.2021.01.006. eCollection 2021 Jul.
2
MICU1 and MICU2 control mitochondrial calcium signaling in the mammalian heart.
Proc Natl Acad Sci U S A. 2024 Aug 27;121(35):e2402491121. doi: 10.1073/pnas.2402491121. Epub 2024 Aug 20.
3
Nuclear-mitochondrial communication involving miR-181c plays an important role in cardiac dysfunction during obesity.
J Mol Cell Cardiol. 2020 Jul;144:87-96. doi: 10.1016/j.yjmcc.2020.05.009. Epub 2020 May 19.
4
MCUB Regulates the Molecular Composition of the Mitochondrial Calcium Uniporter Channel to Limit Mitochondrial Calcium Overload During Stress.
Circulation. 2019 Nov 19;140(21):1720-1733. doi: 10.1161/CIRCULATIONAHA.118.037968. Epub 2019 Sep 19.
5
MCU overexpression evokes disparate dose-dependent effects on mito-ROS and spontaneous Ca release in hypertrophic rat cardiomyocytes.
Am J Physiol Heart Circ Physiol. 2021 Oct 1;321(4):H615-H632. doi: 10.1152/ajpheart.00126.2021. Epub 2021 Aug 20.
6
The debate continues - What is the role of MCU and mitochondrial calcium uptake in the heart?
J Mol Cell Cardiol. 2020 Jun;143:163-174. doi: 10.1016/j.yjmcc.2020.04.029. Epub 2020 Apr 27.
9
Mitochondrial calcium uniporter activity is dispensable for MDA-MB-231 breast carcinoma cell survival.
PLoS One. 2014 May 6;9(5):e96866. doi: 10.1371/journal.pone.0096866. eCollection 2014.
10
MICU3 Regulates Mitochondrial Calcium and Cardiac Hypertrophy.
Circ Res. 2024 Jun 21;135(1):26-40. doi: 10.1161/CIRCRESAHA.123.324026. Epub 2024 May 15.

引用本文的文献

1
Automatic design and optimization of MRI-based neurochemical sensors via reinforcement learning.
Discov Nano. 2025 Sep 1;20(1):148. doi: 10.1186/s11671-025-04338-z.
2
Circadian clock dysfunction in Parkinson's disease: mechanisms, consequences, and therapeutic strategy.
NPJ Parkinsons Dis. 2025 Jul 14;11(1):213. doi: 10.1038/s41531-025-01009-9.
3
Role of circadian rhythms in heart failure: insights from myocardial energy metabolism.
J Transl Med. 2025 Jul 10;23(1):770. doi: 10.1186/s12967-025-06828-1.
6
Effect of -Mediated Circadian Rhythm on Myocardial Infarction: A Narrative Review.
Int J Mol Sci. 2025 May 18;26(10):4831. doi: 10.3390/ijms26104831.
7
Diurnal Variation in Melatonin-Mediated Cardiac Protection via Per2 Expression in Heart.
J Pineal Res. 2025 Mar;77(2):e70036. doi: 10.1111/jpi.70036.
8
ROS-regulated SUR1-TRPM4 drives persistent activation of NLRP3 inflammasome in microglia after whole-brain radiation.
Acta Neuropathol Commun. 2025 Jan 27;13(1):16. doi: 10.1186/s40478-025-01932-1.
9
O-GlcNAcylation of circadian clock protein Bmal1 impairs cognitive function in diabetic mice.
EMBO J. 2024 Nov;43(22):5667-5689. doi: 10.1038/s44318-024-00263-6. Epub 2024 Oct 7.

本文引用的文献

4
MICU1 Interacts with the D-Ring of the MCU Pore to Control Its Ca Flux and Sensitivity to Ru360.
Mol Cell. 2018 Nov 15;72(4):778-785.e3. doi: 10.1016/j.molcel.2018.09.008. Epub 2018 Oct 25.
5
Effect of Melatonin on Rat Heart Mitochondria in Acute Heart Failure in Aged Rats.
Int J Mol Sci. 2018 May 23;19(6):1555. doi: 10.3390/ijms19061555.
6
Role of the circadian system in cardiovascular disease.
J Clin Invest. 2018 Jun 1;128(6):2157-2167. doi: 10.1172/JCI80590.
8
On the causes and consequences of the uncoupler-like effects of quercetin and dehydrosilybin in H9c2 cells.
PLoS One. 2017 Oct 4;12(10):e0185691. doi: 10.1371/journal.pone.0185691. eCollection 2017.
9
Calcium Circadian Rhythmicity in the Suprachiasmatic Nucleus: Cell Autonomy and Network Modulation.
eNeuro. 2017 Aug 18;4(4). doi: 10.1523/ENEURO.0160-17.2017. eCollection 2017 Jul-Aug.
10
Structure, Activity Regulation, and Role of the Mitochondrial Calcium Uniporter in Health and Disease.
Front Oncol. 2017 Jul 10;7:139. doi: 10.3389/fonc.2017.00139. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验