Suppr超能文献

通过过度显著性检测发表偏倚。

Detecting publication selection bias through excess statistical significance.

机构信息

School of Business and Law, Deakin University, Burwood, Victoria, Australia.

Department of Economics, Deakin University, Burwood, Victoria, Australia.

出版信息

Res Synth Methods. 2021 Nov;12(6):776-795. doi: 10.1002/jrsm.1512. Epub 2021 Aug 3.

Abstract

We introduce and evaluate three tests for publication selection bias based on excess statistical significance (ESS). The proposed tests incorporate heterogeneity explicitly in the formulas for expected and ESS. We calculate the expected proportion of statistically significant findings in the absence of selective reporting or publication bias based on each study's SE and meta-analysis estimates of the mean and variance of the true-effect distribution. A simple proportion of statistical significance test (PSST) compares the expected to the observed proportion of statistically significant findings. Alternatively, we propose a direct test of excess statistical significance (TESS). We also combine these two tests of excess statistical significance (TESSPSST). Simulations show that these ESS tests often outperform the conventional Egger test for publication selection bias and the three-parameter selection model (3PSM).

摘要

我们介绍并评估了三种基于过度统计学显著性(ESS)的发表偏倚选择检验。所提出的检验在预期和 ESS 的公式中明确纳入了异质性。我们根据每个研究的 SE 和荟萃分析对真实效应分布均值和方差的估计,计算在不存在选择性报告或发表偏倚的情况下,统计学显著发现的预期比例。一个简单的统计学显著性比例检验(PSST)将预期与统计学显著发现的实际比例进行比较。或者,我们提出了一个直接检验过度统计学显著性(TESS)的方法。我们还结合了这两种过度统计学显著性检验(TESSPSST)。模拟结果表明,这些 ESS 检验通常比传统的发表偏倚选择的 Egger 检验和三参数选择模型(3PSM)表现更好。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验