IEEE Trans Med Imaging. 2021 Dec;40(12):3627-3640. doi: 10.1109/TMI.2021.3093982. Epub 2021 Nov 30.
Accurate and reliable segmentation of colorectal tumors and surrounding colorectal tissues on 3D magnetic resonance images has critical importance in preoperative prediction, staging, and radiotherapy. Previous works simply combine multilevel features without aggregating representative semantic information and without compensating for the loss of spatial information caused by down-sampling. Therefore, they are vulnerable to noise from complex backgrounds and suffer from misclassification and target incompleteness-related failures. In this paper, we address these limitations with a novel adaptive lesion-aware attention network (ALA-Net) which explicitly integrates useful contextual information with spatial details and captures richer feature dependencies based on 3D attention mechanisms. The model comprises two parallel encoding paths. One of these is designed to explore global contextual features and enlarge the receptive field using a recurrent strategy. The other captures sharper object boundaries and the details of small objects that are lost in repeated down-sampling layers. Our lesion-aware attention module adaptively captures long-range semantic dependencies and highlights the most discriminative features, improving semantic consistency and completeness. Furthermore, we introduce a prediction aggregation module to combine multiscale feature maps and to further filter out irrelevant information for precise voxel-wise prediction. Experimental results show that ALA-Net outperforms state-of-the-art methods and inherently generalizes well to other 3D medical images segmentation tasks, providing multiple benefits in terms of target completeness, reduction of false positives, and accurate detection of ambiguous lesion regions.
在术前预测、分期和放疗中,准确可靠地对 3D 磁共振图像上的结直肠肿瘤和周围结直肠组织进行分割具有至关重要的意义。以前的工作只是简单地组合多层次的特征,而没有聚合有代表性的语义信息,也没有补偿下采样造成的空间信息损失。因此,它们容易受到复杂背景噪声的影响,并且容易出现分类错误和目标不完整的问题。在本文中,我们提出了一种新颖的自适应病变感知注意网络(ALA-Net)来解决这些限制,该网络明确地将有用的上下文信息与空间细节相结合,并基于 3D 注意力机制捕捉更丰富的特征依赖性。该模型由两个并行的编码路径组成。其中一个路径用于使用递归策略探索全局上下文特征并扩大感受野。另一个路径用于捕获更清晰的目标边界和在重复下采样层中丢失的小目标的细节。我们的病变感知注意模块自适应地捕获长距离语义依赖关系,并突出最具判别力的特征,提高语义一致性和完整性。此外,我们引入了一个预测聚合模块,用于组合多尺度特征图,并进一步过滤掉不相关的信息,以进行精确的体素预测。实验结果表明,ALA-Net 优于最先进的方法,并且内在地很好地泛化到其他 3D 医学图像分割任务,在目标完整性、减少假阳性和准确检测模糊病变区域方面提供了多个好处。