Suppr超能文献

PEDRA-EFB0:使用带有图像块嵌入和双重残差注意力的深度学习进行结直肠癌预后预测

PEDRA-EFB0: colorectal cancer prognostication using deep learning with patch embeddings and dual residual attention.

作者信息

Zhao Zihao, Wang Hao, Wu Dinghui, Zhu Qibing, Tan Xueping, Hu Shudong, Ge Yuxi

机构信息

School of Internet of Things Engineering, Jiangnan University, Wuxi, 214122, China.

Key Laboratory of Light Industry, Jiangnan University, Wuxi, 214122, China.

出版信息

Med Biol Eng Comput. 2025 Jan 21. doi: 10.1007/s11517-025-03292-3.

Abstract

In computer-aided diagnosis systems, precise feature extraction from CT scans of colorectal cancer using deep learning is essential for effective prognosis. However, existing convolutional neural networks struggle to capture long-range dependencies and contextual information, resulting in incomplete CT feature extraction. To address this, the PEDRA-EFB0 architecture integrates patch embeddings and a dual residual attention mechanism for enhanced feature extraction and survival prediction in colorectal cancer CT scans. A patch embedding method processes CT scans into patches, creating positional features for global representation and guiding spatial attention computation. Additionally, a dual residual attention mechanism during the upsampling stage selectively combines local and global features, enhancing CT data utilization. Furthermore, this paper proposes a feature selection algorithm that combines autoencoders and entropy technology, encoding and compressing high-dimensional data to reduce redundant information and using entropy to assess the importance of features, thereby achieving precise feature selection. Experimental results indicate the PEDRA-EFB0 model outperforms traditional methods on colorectal cancer CT metrics, notably in C-index, BS, MCC, and AUC, enhancing survival prediction accuracy. Our code is freely available at https://github.com/smile0208z/PEDRA .

摘要

在计算机辅助诊断系统中,利用深度学习从结直肠癌的CT扫描中精确提取特征对于有效的预后评估至关重要。然而,现有的卷积神经网络难以捕捉长程依赖和上下文信息,导致CT特征提取不完整。为了解决这个问题,PEDRA-EFB0架构集成了补丁嵌入和双残差注意力机制,以增强结直肠癌CT扫描中的特征提取和生存预测。一种补丁嵌入方法将CT扫描处理成补丁,创建用于全局表示的位置特征并指导空间注意力计算。此外,在向上采样阶段的双残差注意力机制选择性地组合局部和全局特征,提高CT数据利用率。此外,本文提出了一种结合自动编码器和熵技术的特征选择算法,对高维数据进行编码和压缩以减少冗余信息,并使用熵来评估特征的重要性,从而实现精确的特征选择。实验结果表明,PEDRA-EFB0模型在结直肠癌CT指标上优于传统方法,尤其是在C指数、BS、MCC和AUC方面,提高了生存预测准确性。我们的代码可在https://github.com/smile0208z/PEDRA上免费获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验