Suppr超能文献

跨模态成对图像生成和增强用于 RGB-红外人像再识别。

Cross-modality paired-images generation and augmentation for RGB-infrared person re-identification.

机构信息

Institute of Automation, Chinese Academy of Sciences, No.95 Zhongguancun East Road, Beijing 100190, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, PR China.

Institute of Automation, Chinese Academy of Sciences, No.95 Zhongguancun East Road, Beijing 100190, PR China.

出版信息

Neural Netw. 2020 Aug;128:294-304. doi: 10.1016/j.neunet.2020.05.008. Epub 2020 May 19.

Abstract

RGB-Infrared (IR) person re-identification is very challenging due to the large cross-modality variations between RGB and IR images. Considering no correspondence labels between every pair of RGB and IR images, most methods try to alleviate the variations with set-level alignment by reducing marginal distribution divergence between the entire RGB and IR sets. However, this set-level alignment strategy may lead to misalignment of some instances, which limit the performance for RGB-IR Re-ID. Different from existing methods, in this paper, we propose to generate cross-modality paired-images and perform both global set-level and fine-grained instance-level alignments. Our proposed method enjoys several merits. First, our method can perform set-level alignment by disentangling modality-specific and modality-invariant features. Compared with conventional methods, ours can explicitly remove the modality-specific features and the modality variation can be better reduced. Second, given cross-modality unpaired-images of a person, our method can generate cross-modality paired images from exchanged features. With them, we can directly perform instance-level alignment by minimizing distances of every pair of images. Third, our method learns a latent manifold space. In the space, we can random sample and generate lots of images of unseen classes. Training with those images, the learned identity feature space is more smooth can generalize better when test. Finally, extensive experimental results on two standard benchmarks demonstrate that the proposed model favorably against state-of-the-art methods.

摘要

RGB-红外(IR)人员重新识别非常具有挑战性,因为 RGB 和 IR 图像之间存在很大的跨模态差异。考虑到 RGB 和 IR 图像的每一对之间没有对应标签,大多数方法试图通过减少整个 RGB 和 IR 集之间的边缘分布差异来实现集级别的对齐。然而,这种集级别的对齐策略可能会导致一些实例的对齐错误,从而限制了 RGB-IR Re-ID 的性能。与现有方法不同,在本文中,我们提出生成跨模态成对图像,并进行全局集级和细粒度实例级对齐。我们提出的方法具有几个优点。首先,我们的方法可以通过解耦模态特定和模态不变特征来执行集级对齐。与传统方法相比,我们的方法可以显式地去除模态特定特征,并且可以更好地减少模态变化。其次,给定一个人的跨模态未配对图像,我们的方法可以从交换的特征中生成跨模态配对图像。有了这些图像,我们可以通过最小化每对图像的距离直接进行实例级对齐。第三,我们的方法学习了一个潜在的流形空间。在这个空间中,我们可以随机采样和生成大量看不见类别的图像。使用这些图像进行训练,学习到的身份特征空间更加平滑,在测试时可以更好地泛化。最后,在两个标准基准上的广泛实验结果表明,所提出的模型优于最先进的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验