Suppr超能文献

贝尔对角态和维纳态的生成:IBM量子计算机上的纠缠、非定域性、导引和量子失协

Bell Diagonal and Werner State Generation: Entanglement, Non-Locality, Steering and Discord on the IBM Quantum Computer.

作者信息

Riedel Gårding Elias, Schwaller Nicolas, Chan Chun Lam, Chang Su Yeon, Bosch Samuel, Gessler Frederic, Laborde Willy Robert, Hernandez Javier Naya, Si Xinyu, Dupertuis Marc-André, Macris Nicolas

机构信息

Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.

Department of Physics, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden.

出版信息

Entropy (Basel). 2021 Jun 23;23(7):797. doi: 10.3390/e23070797.

Abstract

We propose the first correct special-purpose quantum circuits for preparation of Bell diagonal states (BDS), and implement them on the IBM Quantum computer, characterizing and testing complex aspects of their quantum correlations in the full parameter space. Among the circuits proposed, one involves only two quantum bits but requires adapted quantum tomography routines handling classical bits in parallel. The entire class of Bell diagonal states is generated, and several characteristic indicators, namely entanglement of formation and concurrence, CHSH non-locality, steering and discord, are experimentally evaluated over the full parameter space and compared with theory. As a by-product of this work, we also find a remarkable general inequality between "quantum discord" and "asymmetric relative entropy of discord": the former never exceeds the latter. We also prove that for all BDS the two coincide.

摘要

我们提出了首个用于制备贝尔对角态(BDS)的正确专用量子电路,并在IBM量子计算机上实现了这些电路,在全参数空间中对其量子关联的复杂方面进行了表征和测试。在所提出的电路中,有一个仅涉及两个量子比特,但需要适配的量子层析成像例程来并行处理经典比特。生成了整个贝尔对角态类别,并在全参数空间中通过实验评估了几个特征指标,即形成纠缠和并发度、CHSH非局域性、导引和量子失协,并与理论进行了比较。作为这项工作的一个副产品,我们还发现了“量子失协”与“失协的不对称相对熵”之间一个显著的一般不等式:前者从不超过后者。我们还证明,对于所有贝尔对角态,二者是相等的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6def/8304312/2dc3b1e0fc1e/entropy-23-00797-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验