文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

肿瘤球体形成与生长的建模

Modeling of Tumor Spheroid Formation and Growth.

作者信息

Amereh Meitham, Edwards Roderick, Akbari Mohsen, Nadler Ben

机构信息

Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada.

Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8W 2Y2, Canada.

出版信息

Micromachines (Basel). 2021 Jun 25;12(7):749. doi: 10.3390/mi12070749.


DOI:10.3390/mi12070749
PMID:34202262
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8303756/
Abstract

Mathematical modeling has significant potential for understanding of biological models of cancer and to accelerate the progress in cross-disciplinary approaches of cancer treatment. In mathematical biology, solid tumor spheroids are often studied as preliminary models of avascular tumors. The size of spheroids and their cell number are easy to track, making them a simple model to investigate tumor behavior, quantitatively. The growth of solid tumors is comprised of three main stages: transient formation, monotonic growth and a plateau phase. The last two stages are extensively studied. However, the initial transient formation phase is typically missing from the literature. This stage is important in the early dynamics of growth, formation of clonal sub-populations, etc. In the current work, this transient formation is modeled by a reaction-diffusion partial differential equation (PDE) for cell concentration, coupled with an ordinary differential equation (ODE) for the spheroid radius. Analytical and numerical solutions of the coupled equations were obtained for the change in the radius of tumor spheroids over time. Human glioblastoma (hGB) cancer cells (U251 and U87) were spheroid cultured to validate the model prediction. Results of this study provide insight into the mechanism of development of solid tumors at their early stage of formation.

摘要

数学建模在理解癌症生物学模型以及加速癌症治疗跨学科方法的进展方面具有巨大潜力。在数学生物学中,实体瘤球体常被作为无血管肿瘤的初步模型进行研究。球体的大小及其细胞数量易于追踪,这使其成为定量研究肿瘤行为的简单模型。实体瘤的生长包括三个主要阶段:短暂形成期、单调生长期和平台期。后两个阶段已得到广泛研究。然而,文献中通常缺少初始的短暂形成期。这个阶段在生长的早期动态、克隆亚群的形成等方面很重要。在当前工作中,这种短暂形成过程通过一个关于细胞浓度的反应扩散偏微分方程(PDE)以及一个关于球体半径的常微分方程(ODE)进行建模。针对肿瘤球体半径随时间的变化,获得了耦合方程的解析解和数值解。对人胶质母细胞瘤(hGB)癌细胞(U251和U87)进行球体培养以验证模型预测。本研究结果为实体瘤形成早期阶段的发展机制提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb29/8303756/b196c23a2922/micromachines-12-00749-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb29/8303756/21bdaa797e96/micromachines-12-00749-g0A1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb29/8303756/eb6b10c18969/micromachines-12-00749-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb29/8303756/b7410a878bc0/micromachines-12-00749-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb29/8303756/8ceec22644db/micromachines-12-00749-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb29/8303756/984ee2c021a8/micromachines-12-00749-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb29/8303756/b196c23a2922/micromachines-12-00749-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb29/8303756/21bdaa797e96/micromachines-12-00749-g0A1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb29/8303756/eb6b10c18969/micromachines-12-00749-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb29/8303756/b7410a878bc0/micromachines-12-00749-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb29/8303756/8ceec22644db/micromachines-12-00749-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb29/8303756/984ee2c021a8/micromachines-12-00749-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb29/8303756/b196c23a2922/micromachines-12-00749-g005.jpg

相似文献

[1]
Modeling of Tumor Spheroid Formation and Growth.

Micromachines (Basel). 2021-6-25

[2]
Formation and Growth of Co-Culture Tumour Spheroids: New Compartment-Based Mathematical Models and Experiments.

Bull Math Biol. 2023-12-13

[3]
Dynamics of spheroid self-assembly in liquid-overlay culture of DU 145 human prostate cancer cells.

Biotechnol Bioeng. 2001-3-20

[4]
Predicting the growth of glioblastoma multiforme spheroids using a multiphase porous media model.

Biomech Model Mechanobiol. 2016-10

[5]
Viscoelastic modeling of the fusion of multicellular tumor spheroids in growth phase.

J Theor Biol. 2018-6-18

[6]
Mathematical modeling of the proliferation gradient in multicellular tumor spheroids.

J Theor Biol. 2018-8-24

[7]
Mathematical modelling of the spatio-temporal response of cytotoxic T-lymphocytes to a solid tumour.

Math Med Biol. 2004-3

[8]
Mathematical modelling of microenvironment and growth in EMT6/Ro multicellular tumour spheroids.

Cell Prolif. 1992-1

[9]
Drug resistance conferred by MDR1 expression in spheroids formed by glioblastoma cell lines.

Anticancer Res. 1997

[10]
Homogeneous pancreatic cancer spheroids mimic growth pattern of circulating tumor cell clusters and macrometastases: displaying heterogeneity and crater-like structure on inner layer.

J Cancer Res Clin Oncol. 2017-9

引用本文的文献

[1]
Improving 3D deep learning segmentation with biophysically motivated cell synthesis.

Commun Biol. 2025-1-11

[2]
Insights from a multiscale framework on metabolic rate variation driving glioblastoma multiforme growth and invasion.

Commun Eng. 2024-11-25

[3]
In silico model development and optimization of in vitro lung cell population growth.

PLoS One. 2024

[4]
PIEZO1 regulates leader cell formation and cellular coordination during collective keratinocyte migration.

PLoS Comput Biol. 2024-4

[5]
Modelling the complex nature of the tumor microenvironment: 3D tumor spheroids as an evolving tool.

J Biomed Sci. 2024-1-23

[6]
Efficient Radial-Shell Model for 3D Tumor Spheroid Dynamics with Radiotherapy.

Cancers (Basel). 2023-11-29

[7]
3D-Printed Tumor-on-a-Chip Model for Investigating the Effect of Matrix Stiffness on Glioblastoma Tumor Invasion.

Biomimetics (Basel). 2023-9-11

[8]
Development of a scoring function for comparing simulated and experimental tumor spheroids.

PLoS Comput Biol. 2023-3

[9]
In-silico study of asymmetric remodeling of tumors in response to external biochemical stimuli.

Sci Rep. 2023-1-18

[10]
A Signaling Crosstalk Links SNAIL to the 37/67 kDa Laminin-1 Receptor Ribosomal Protein SA and Regulates the Acquisition of a Cancer Stem Cell Molecular Signature in U87 Glioblastoma Neurospheres.

Cancers (Basel). 2022-11-30

本文引用的文献

[1]
Self-filling microwell arrays (SFMAs) for tumor spheroid formation.

Lab Chip. 2018-11-6

[2]
Towards personalized computational oncology: from spatial models of tumour spheroids, to organoids, to tissues.

J R Soc Interface. 2018-1

[3]
The Role of Oxygen in Avascular Tumor Growth.

PLoS One. 2016-4-18

[4]
Simulation of avascular tumor growth by agent-based game model involving phenotype-phenotype interactions.

Sci Rep. 2015-12-9

[5]
The mathematics of cancer: integrating quantitative models.

Nat Rev Cancer. 2015-12

[6]
Exact solutions of linear reaction-diffusion processes on a uniformly growing domain: criteria for successful colonization.

PLoS One. 2015-2-18

[7]
Colonizing while migrating: how do individual enteric neural crest cells behave?

BMC Biol. 2014-3-26

[8]
Discrete and continuous models for tissue growth and shrinkage.

J Theor Biol. 2014-6-7

[9]
Simple rules for a "simple" nervous system? Molecular and biomathematical approaches to enteric nervous system formation and malformation.

Dev Biol. 2013-7-6

[10]
A multiscale road map of cancer spheroids--incorporating experimental and mathematical modelling to understand cancer progression.

J Cell Sci. 2013-6-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索