Suppr超能文献

迈向个性化计算肿瘤学:从肿瘤球体的空间模型,到类器官,再到组织。

Towards personalized computational oncology: from spatial models of tumour spheroids, to organoids, to tissues.

机构信息

Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.

Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.

出版信息

J R Soc Interface. 2018 Jan;15(138). doi: 10.1098/rsif.2017.0703.

Abstract

A main goal of mathematical and computational oncology is to develop quantitative tools to determine the most effective therapies for each individual patient. This involves predicting the right drug to be administered at the right time and at the right dose. Such an approach is known as precision medicine. Mathematical modelling can play an invaluable role in the development of such therapeutic strategies, since it allows for relatively fast, efficient and inexpensive simulations of a large number of treatment schedules in order to find the most effective. This review is a survey of mathematical models that explicitly take into account the spatial architecture of three-dimensional tumours and address tumour development, progression and response to treatments. In particular, we discuss models of epithelial acini, multicellular spheroids, normal and tumour spheroids and organoids, and multi-component tissues. Our intent is to showcase how these models can be applied to patient-specific data to assess which therapeutic strategies will be the most efficient. We also present the concept of virtual clinical trials that integrate standard-of-care patient data, medical imaging, organ-on-chip experiments and computational models to determine personalized medical treatment strategies.

摘要

数学和计算肿瘤学的主要目标之一是开发定量工具,以确定每个个体患者的最有效治疗方法。这涉及到预测在正确的时间以正确的剂量给予正确的药物。这种方法被称为精准医学。数学建模可以在开发这种治疗策略中发挥非常宝贵的作用,因为它可以相对快速、高效和廉价地模拟大量治疗方案,以找到最有效的方案。本文综述了明确考虑三维肿瘤空间结构并解决肿瘤发展、进展和对治疗反应的数学模型。特别是,我们讨论了上皮腺泡、多细胞球体、正常和肿瘤球体和类器官以及多组分组织的模型。我们的目的是展示如何将这些模型应用于患者特定的数据,以评估哪些治疗策略将是最有效的。我们还提出了虚拟临床试验的概念,该概念将标准护理患者数据、医学成像、器官芯片实验和计算模型集成在一起,以确定个性化的医疗治疗策略。

相似文献

9
Computational challenges of tumor spheroid modeling.肿瘤球体建模的计算挑战。
J Bioinform Comput Biol. 2011 Aug;9(4):559-77. doi: 10.1142/s0219720011005379.

引用本文的文献

6
Systems bioengineering approaches for developmental toxicology.发育毒理学的系统生物工程方法
Comput Struct Biotechnol J. 2023 Jun 7;21:3272-3279. doi: 10.1016/j.csbj.2023.06.005. eCollection 2023.

本文引用的文献

9
Somatic Mutations Drive Distinct Imaging Phenotypes in Lung Cancer.体细胞突变驱动肺癌中不同的影像学表型。
Cancer Res. 2017 Jul 15;77(14):3922-3930. doi: 10.1158/0008-5472.CAN-17-0122. Epub 2017 May 31.
10
An Platform for the Prediction of Clinical Response in Multiple Myeloma.一个用于预测多发性骨髓瘤临床反应的平台。
Cancer Res. 2017 Jun 15;77(12):3336-3351. doi: 10.1158/0008-5472.CAN-17-0502. Epub 2017 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验