Suppr超能文献

IOU 回归与 H+L 采样的精准检测置信度。

IoU Regression with H+L-Sampling for Accurate Detection Confidence.

机构信息

Center for Applied Mathematics, Tianjin University, Tianjin 300072, China.

出版信息

Sensors (Basel). 2021 Jun 28;21(13):4433. doi: 10.3390/s21134433.

Abstract

It is a common paradigm in object detection frameworks that the samples in training and testing have consistent distributions for the two main tasks: Classification and bounding box regression. This paradigm is popular in sampling strategy for training an object detector due to its intuition and practicability. For the task of localization quality estimation, there exist two ways of sampling: The same sampling with the main tasks and the uniform sampling by manually augmenting the ground-truth. The first method of sampling is simple but inconsistent for the task of quality estimation. The second method of uniform sampling contains all IoU level distributions but is more complex and difficult for training. In this paper, we propose an H+L-Sampling strategy, selecting the high and low IoU samples simultaneously, to effectively and simply train the branch of quality estimation. This strategy inherits the effectiveness of consistent sampling and reduces the training difficulty of uniform sampling. Finally, we introduce accurate detection confidence, which combines the classification probability and the localization accuracy, as the ranking keyword of NMS. Extensive experiments show the effectiveness of our method in solving the misalignment between classification confidence and localization accuracy and improving the detection performance.

摘要

在目标检测框架中,有一个常见的范例,即训练和测试中的样本在两个主要任务(分类和边界框回归)上具有一致的分布。由于其直观性和实用性,这种范例在训练目标检测器的采样策略中很受欢迎。对于定位质量估计任务,有两种采样方式:与主要任务相同的采样和通过手动扩充ground-truth 的均匀采样。第一种采样方法简单,但对于质量估计任务不一致。第二种均匀采样的方法包含所有 IoU 水平分布,但更复杂,训练难度更大。在本文中,我们提出了一种 H+L-采样策略,同时选择高和低 IoU 样本,以有效地、简单地训练质量估计分支。该策略继承了一致采样的有效性,同时降低了均匀采样的训练难度。最后,我们引入了准确的检测置信度,它结合了分类概率和定位精度,作为 NMS 的排序关键字。广泛的实验表明,我们的方法在解决分类置信度和定位精度之间的不匹配以及提高检测性能方面是有效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fce/8271873/5cca1f98d942/sensors-21-04433-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验