Shepley Andrew J, Falzon Greg, Kwan Paul, Brankovic Ljiljana
IEEE Trans Pattern Anal Mach Intell. 2023 Oct;45(10):11561-11574. doi: 10.1109/TPAMI.2023.3273210. Epub 2023 Sep 5.
Confluence is a novel non-Intersection over Union (IoU) alternative to Non-Maxima Suppression (NMS) in bounding box post-processing in object detection. It overcomes the inherent limitations of IoU-based NMS variants to provide a more stable, consistent predictor of bounding box clustering by using a normalized Manhattan Distance inspired proximity metric to represent bounding box clustering. Unlike Greedy and Soft NMS, it does not rely solely on classification confidence scores to select optimal bounding boxes, instead selecting the box which is closest to every other box within a given cluster and removing highly confluent neighboring boxes. Confluence is experimentally validated on the MS COCO and CrowdHuman benchmarks, improving Average Precision by 0.2--2.7% and 1--3.8% respectively and Average Recall by 1.3--9.3 and 2.4--7.3% when compared against Greedy and Soft-NMS variants. Quantitative results are supported by extensive qualitative analysis and threshold sensitivity analysis experiments support the conclusion that Confluence is more robust than NMS variants. Confluence represents a paradigm shift in bounding box processing, with potential to replace IoU in bounding box regression processes.
Confluence是目标检测中边界框后处理中一种新颖的非交并比(IoU)替代非极大值抑制(NMS)的方法。它克服了基于IoU的NMS变体的固有局限性,通过使用受归一化曼哈顿距离启发的接近度度量来表示边界框聚类,从而提供更稳定、一致的边界框聚类预测器。与贪婪NMS和软NMS不同,它不仅仅依赖于分类置信度分数来选择最优边界框,而是选择在给定聚类中与其他每个框最接近的框,并移除高度重叠的相邻框。Confluence在MS COCO和CrowdHuman基准上经过实验验证,与贪婪NMS和软NMS变体相比,平均精度分别提高了0.2% - 2.7%和1% - 3.8%,平均召回率分别提高了1.3% - 9.3%和2.4% - 7.3%。大量的定性分析支持了定量结果,阈值敏感性分析实验也支持了Confluence比NMS变体更稳健的结论。Confluence代表了边界框处理的范式转变,有可能在边界框回归过程中取代IoU。