Suppr超能文献

基于液体活检的早期癌症检测中的机器学习协议:一项综述。

Machine Learning Protocols in Early Cancer Detection Based on Liquid Biopsy: A Survey.

作者信息

Liu Linjing, Chen Xingjian, Petinrin Olutomilayo Olayemi, Zhang Weitong, Rahaman Saifur, Tang Zhi-Ri, Wong Ka-Chun

机构信息

Department of Computer Science, City University of Hong Kong, Hong Kong, China.

Hong Kong Institute for Data Science, City University of Hong Kong, Hong Kong, China.

出版信息

Life (Basel). 2021 Jun 30;11(7):638. doi: 10.3390/life11070638.

Abstract

With the advances of liquid biopsy technology, there is increasing evidence that body fluid such as blood, urine, and saliva could harbor the potential biomarkers associated with tumor origin. Traditional correlation analysis methods are no longer sufficient to capture the high-resolution complex relationships between biomarkers and cancer subtype heterogeneity. To address the challenge, researchers proposed machine learning techniques with liquid biopsy data to explore the essence of tumor origin together. In this survey, we review the machine learning protocols and provide corresponding code demos for the approaches mentioned. We discuss algorithmic principles and frameworks extensively developed to reveal cancer mechanisms and consider the future prospects in biomarker exploration and cancer diagnostics.

摘要

随着液体活检技术的进步,越来越多的证据表明,血液、尿液和唾液等体液中可能存在与肿瘤起源相关的潜在生物标志物。传统的相关性分析方法已不足以捕捉生物标志物与癌症亚型异质性之间的高分辨率复杂关系。为应对这一挑战,研究人员提出了利用液体活检数据的机器学习技术,以共同探索肿瘤起源的本质。在本次综述中,我们回顾了机器学习方案,并为上述方法提供了相应的代码演示。我们广泛讨论了为揭示癌症机制而大力发展的算法原理和框架,并考虑了生物标志物探索和癌症诊断的未来前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3402/8308091/cae31c830b4a/life-11-00638-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验