Sun Shuai, Bi Jun, Guillen Montserrat, Pérez-Marín Ana M
Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China.
Department of Econometrics, Riskcenter-IREA, Universitat de Barcelona, 08034 Barcelona, Spain.
Entropy (Basel). 2021 Jun 29;23(7):829. doi: 10.3390/e23070829.
This study proposes a method for identifying and evaluating driving risk as a first step towards calculating premiums in the newly emerging context of usage-based insurance. Telematics data gathered by the Internet of Vehicles (IoV) contain a large number of near-miss events which can be regarded as an alternative for modeling claims or accidents for estimating a driving risk score for a particular vehicle and its driver. Poisson regression and negative binomial regression are applied to a summary data set of 182 vehicles with one record per vehicle and to a panel data set of daily vehicle data containing four near-miss events, i.e., counts of excess speed, high speed brake, harsh acceleration or deceleration and additional driving behavior parameters that do not result in accidents. Negative binomial regression (AICoverspeed = 997.0, BICoverspeed = 1022.7) is seen to perform better than Poisson regression (AICoverspeed = 7051.8, BICoverspeed = 7074.3). Vehicles are separately classified to five driving risk levels with a driving risk score computed from individual effects of the corresponding panel model. This study provides a research basis for actuarial insurance premium calculations, even if no accident information is available, and enables a precise supervision of dangerous driving behaviors based on driving risk scores.
本研究提出了一种识别和评估驾驶风险的方法,作为在新兴的基于使用情况的保险背景下计算保费的第一步。车联网(IoV)收集的远程信息处理数据包含大量险些发生的事件,这些事件可被视为用于对索赔或事故进行建模的替代数据,以估计特定车辆及其驾驶员的驾驶风险评分。泊松回归和负二项式回归应用于一个包含182辆车的汇总数据集(每辆车一条记录)以及一个包含四个险些发生事件(即超速、急刹车、剧烈加速或减速以及未导致事故的其他驾驶行为参数的计数)的每日车辆数据面板数据集。结果表明,负二项式回归(AIC超速 = 997.0,BIC超速 = 1022.7)比泊松回归(AIC超速 = 7051.8,BIC超速 = 7074.3)表现更好。根据相应面板模型的个体效应计算出驾驶风险评分,将车辆分别分为五个驾驶风险等级。本研究为精算保险费计算提供了研究基础,即使没有事故信息可用,并且能够基于驾驶风险评分对危险驾驶行为进行精确监管。