Guillen Montserrat, Pérez-Marín Ana M, Nielsen Jens P
Departament d'Econometria, Estadística i Economia Aplicada, Universitat de Barcelona (UB), Av. Diagonal, 690, 08034, Barcelona, Spain.
RISKcenter-Institut de Recerca en Economia Aplicada (IREA), Universitat de Barcelona (UB), Av. Diagonal, 690, 08034, Barcelona, Spain.
Heliyon. 2024 Aug 18;10(16):e36501. doi: 10.1016/j.heliyon.2024.e36501. eCollection 2024 Aug 30.
Telematics boxes integrated into vehicles are instrumental in capturing driving data encompassing behavioral and contextual information, including speed, distance travelled by road type, and time of day. These data can be amalgamated with drivers' individual attributes and reported accident occurrences to their respective insurance providers. Our study analyzes a substantial sample size of 19,214 individual drivers over a span of 55 weeks, covering a cumulative distance of 181.4 million kilometers driven. Utilizing this dataset, we develop predictive models for weekly accident frequency. As anticipated based on prior research with yearly data, our findings affirm that behavioral traits, such as instances of excessive speed, and contextual data pertaining to road type and time of day significantly aid in ratemaking design. The predictive models enable the creation of driving scores and personalized warnings, presenting a potential to enhance traffic safety by alerting drivers to perilous conditions. Our discussion delves into the construction of multiplicative scores derived from Poisson regression, contrasting them with additive scores resulting from a linear probability model approach, which offer greater communicability. Furthermore, we demonstrate that the inclusion of lagged behavioral and contextual factors not only enhances prediction accuracy but also lays the foundation for a diverse range of usage-based insurance schemes for weekly payments.
集成在车辆中的远程信息处理盒有助于获取包含行为和情境信息的驾驶数据,包括速度、按道路类型行驶的距离以及一天中的时间。这些数据可以与驾驶员的个人属性以及向各自保险提供商报告的事故发生情况相结合。我们的研究分析了在55周内19214名个体驾驶员的大量样本,累计行驶距离达1.814亿公里。利用该数据集,我们开发了每周事故频率的预测模型。正如基于年度数据的先前研究所预期的那样,我们的研究结果证实,诸如超速情况等行为特征以及与道路类型和一天中的时间相关的情境数据对费率制定设计有显著帮助。这些预测模型能够生成驾驶分数并提供个性化警告,通过提醒驾驶员注意危险状况,具有增强交通安全的潜力。我们的讨论深入探讨了从泊松回归得出的乘法分数的构建,并将其与线性概率模型方法得出的加法分数进行对比,加法分数具有更强的可解释性。此外,我们证明纳入滞后的行为和情境因素不仅提高了预测准确性,还为一系列基于使用情况的每周支付保险方案奠定了基础。