Suppr超能文献

Acoustilytix™:一个基于网络的自动超声发声评分平台。

Acoustilytix™: A Web-Based Automated Ultrasonic Vocalization Scoring Platform.

作者信息

Ashley Catherine B, Snyder Ryan D, Shepherd James E, Cervantes Catalina, Mittal Nitish, Fleming Sheila, Bailey Jaxon, Nievera Maisie D, Souleimanova Sharmin Islam, Nyaoga Bill, Lichtenfeld Lauren, Chen Alicia R, Maddox W Todd, Duvauchelle Christine L

机构信息

Cornerstone Research Group, Miamisburg, OH 45342, USA.

Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Stop A1915, Austin, TX 78712, USA.

出版信息

Brain Sci. 2021 Jun 29;11(7):864. doi: 10.3390/brainsci11070864.

Abstract

Ultrasonic vocalizations (USVs) are known to reflect emotional processing, brain neurochemistry, and brain function. Collecting and processing USV data is manual, time-intensive, and costly, creating a significant bottleneck by limiting researchers' ability to employ fully effective and nuanced experimental designs and serving as a barrier to entry for other researchers. In this report, we provide a snapshot of the current development and testing of Acoustilytix™, a web-based automated USV scoring tool. Acoustilytix implements machine learning methodology in the USV detection and classification process and is recording-environment-agnostic. We summarize the user features identified as desirable by USV researchers and how these were implemented. These include the ability to easily upload USV files, output a list of detected USVs with associated parameters in csv format, and the ability to manually verify or modify an automatically detected call. With no user intervention or tuning, Acoustilytix achieves 93% sensitivity (a measure of how accurately Acoustilytix detects true calls) and 73% precision (a measure of how accurately Acoustilytix avoids false positives) in call detection across four unique recording environments and was superior to the popular DeepSqueak algorithm (sensitivity = 88%; precision = 41%). Future work will include integration and implementation of machine-learning-based call type classification prediction that will recommend a call type to the user for each detected call. Call classification accuracy is currently in the 71-79% accuracy range, which will continue to improve as more USV files are scored by expert scorers, providing more training data for the classification model. We also describe a recently developed feature of Acoustilytix that offers a fast and effective way to train hand-scorers using automated learning principles without the need for an expert hand-scorer to be present and is built upon a foundation of learning science. The key is that trainees are given practice classifying hundreds of calls with immediate corrective feedback based on an expert's USV classification. We showed that this approach is highly effective with inter-rater reliability (i.e., kappa statistics) between trainees and the expert ranging from 0.30-0.75 (average = 0.55) after only 1000-2000 calls of training. We conclude with a brief discussion of future improvements to the Acoustilytix platform.

摘要

已知超声发声(USV)能反映情绪处理、大脑神经化学和大脑功能。收集和处理USV数据是人工操作,耗时且成本高,限制了研究人员采用全面有效的精细实验设计的能力,从而造成了重大瓶颈,也成为其他研究人员进入该领域的障碍。在本报告中,我们简要介绍了基于网络的自动USV评分工具Acoustilytix™的当前开发和测试情况。Acoustilytix在USV检测和分类过程中采用机器学习方法,且与录音环境无关。我们总结了USV研究人员确定的理想用户功能以及这些功能的实现方式。这些功能包括能够轻松上传USV文件、以csv格式输出检测到的USV及其相关参数列表,以及能够手动验证或修改自动检测到的叫声。在无需用户干预或调整的情况下,Acoustilytix在四种独特录音环境中的叫声检测中实现了93%的灵敏度(衡量Acoustilytix检测真实叫声的准确程度)和73%的精确率(衡量Acoustilytix避免误报的准确程度),优于流行的DeepSqueak算法(灵敏度 = 88%;精确率 = 41%)。未来的工作将包括基于机器学习的叫声类型分类预测的集成与实施,该预测将为每个检测到的叫声向用户推荐叫声类型。目前叫声分类准确率在71 - 79%的范围内,随着更多USV文件由专家评分员评分,为分类模型提供更多训练数据,准确率将持续提高。我们还描述了Acoustilytix最近开发的一项功能,该功能提供了一种快速有效的方法,利用自动学习原理训练人工评分员,无需专家人工评分员在场,且基于学习科学的基础构建。关键在于为受训人员提供对数百个叫声进行分类的练习,并根据专家的USV分类立即给予纠正反馈。我们表明,仅经过1000 - 2000次叫声训练后,这种方法在受训人员与专家之间的评分者间信度(即kappa统计量)为0.30 - 0.75(平均 = 0.55)时非常有效。最后,我们简要讨论了Acoustilytix平台未来的改进方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dfa/8301917/0e17a170313d/brainsci-11-00864-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验