Suppr超能文献

运用横断和透视绘图来空间和统计地表示住院患者血糖控制。

Use of Cross-sectional and Perspective Mapping to Spatially and Statistically Represent Inpatient Glucose Control.

机构信息

Department of Information Technology, Mayo Clinic, Scottsdale, AZ, USA.

Mayo Clinic Hospital, Phoenix, Arizona, and Biostatistics, Mayo Clinic, Scottsdale, AZ, USA.

出版信息

J Diabetes Sci Technol. 2022 Nov;16(6):1385-1392. doi: 10.1177/19322968211027230. Epub 2021 Jul 1.

Abstract

BACKGROUND

The use of inpatient location for the depiction of glycemic control is an alternative approach to the traditional analysis of hospital-derived glucometric data. Our aim was to develop a method of spatial representation and to test for corresponding statistical variation in inpatient glucose control data.

METHODS

Point-of-care blood glucose data from inpatients with diabetes mellitus were extracted. Calculations included patient-day weighted means (PDWMs) and percentage of patient hospital days with hypoglycemia. Results were overlaid onto hospital floor plans, and room numbers were used as geolocators to generate cross-sectional (2-dimensional) and perspective (3-dimensional) views of the data. Linear mixed and mixed-effects logistic regression models were used to compare the location effect and to assess statistical variation in the data after adjusting for age, sex, and severity of illness.

RESULTS

Visual inspection of cross-sectional and perspective maps demonstrated variation in glucometric outcomes across areas within the hospital. Statistical analysis confirmed significant variation between some hospital wings and floors.

CONCLUSIONS

Spatial depiction of glucometric data within the hospital could yield insights into hot spots of poor glycemic control. Future studies on how to operationalize this approach, and whether this method of analysis can drive changes in glycemic management practices, need to be conducted.

摘要

背景

使用住院患者位置来描述血糖控制是一种替代传统分析医院血糖数据的方法。我们的目的是开发一种空间表示方法,并测试住院血糖控制数据中相应的统计变化。

方法

从糖尿病住院患者的即时血糖数据中提取数据。计算包括患者日加权平均值(PDWM)和低血糖患者住院日的百分比。结果叠加到医院平面图上,房间号用作地理位置标记,以生成数据的横截面(二维)和透视(三维)视图。使用线性混合和混合效应逻辑回归模型来比较位置效应,并在调整年龄、性别和疾病严重程度后评估数据中的统计变化。

结果

对横截面和透视图的直观检查表明,医院内不同区域的血糖结果存在差异。统计分析证实了医院某些翼楼和楼层之间存在显著差异。

结论

在医院内对血糖数据进行空间描绘可能会深入了解血糖控制不佳的热点。需要进一步研究如何实施这种方法,以及这种分析方法是否可以推动血糖管理实践的改变。

相似文献

本文引用的文献

1
15. Diabetes Care in the Hospital: .医院中的糖尿病护理: 。
Diabetes Care. 2019 Jan;42(Suppl 1):S173-S181. doi: 10.2337/dc19-S015.
4
Advances in spatial epidemiology and geographic information systems.空间流行病学和地理信息系统的进展。
Ann Epidemiol. 2017 Jan;27(1):1-9. doi: 10.1016/j.annepidem.2016.12.001. Epub 2016 Dec 8.
5
Hyperglycemia during the immediate period following liver transplantation.肝移植术后即刻出现的高血糖症。
Future Sci OA. 2016 Jan 27;2(1):FSO97. doi: 10.4155/fsoa-2015-0010. eCollection 2016 Mar.
6
Spatial Data Analysis.空间数据分析
Annu Rev Public Health. 2016;37:47-60. doi: 10.1146/annurev-publhealth-032315-021711. Epub 2016 Jan 20.
9
Benchmarking glycemic control in u.s. Hospitals.美国医院血糖控制的基准评估
Endocr Pract. 2014 Sep;20(9):876-83. doi: 10.4158/EP13516.OR.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验