Suppr超能文献

一种基于人工智能的心电图算法,用于在窦性心律期间识别房颤患者:对结局预测的回顾性分析。

An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction.

机构信息

Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.

Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA.

出版信息

Lancet. 2019 Sep 7;394(10201):861-867. doi: 10.1016/S0140-6736(19)31721-0. Epub 2019 Aug 1.

Abstract

BACKGROUND

Atrial fibrillation is frequently asymptomatic and thus underdetected but is associated with stroke, heart failure, and death. Existing screening methods require prolonged monitoring and are limited by cost and low yield. We aimed to develop a rapid, inexpensive, point-of-care means of identifying patients with atrial fibrillation using machine learning.

METHODS

We developed an artificial intelligence (AI)-enabled electrocardiograph (ECG) using a convolutional neural network to detect the electrocardiographic signature of atrial fibrillation present during normal sinus rhythm using standard 10-second, 12-lead ECGs. We included all patients aged 18 years or older with at least one digital, normal sinus rhythm, standard 10-second, 12-lead ECG acquired in the supine position at the Mayo Clinic ECG laboratory between Dec 31, 1993, and July 21, 2017, with rhythm labels validated by trained personnel under cardiologist supervision. We classified patients with at least one ECG with a rhythm of atrial fibrillation or atrial flutter as positive for atrial fibrillation. We allocated ECGs to the training, internal validation, and testing datasets in a 7:1:2 ratio. We calculated the area under the curve (AUC) of the receiver operatoring characteristic curve for the internal validation dataset to select a probability threshold, which we applied to the testing dataset. We evaluated model performance on the testing dataset by calculating the AUC and the accuracy, sensitivity, specificity, and F1 score with two-sided 95% CIs.

FINDINGS

We included 180 922 patients with 649 931 normal sinus rhythm ECGs for analysis: 454 789 ECGs recorded from 126 526 patients in the training dataset, 64 340 ECGs from 18 116 patients in the internal validation dataset, and 130 802 ECGs from 36 280 patients in the testing dataset. 3051 (8·4%) patients in the testing dataset had verified atrial fibrillation before the normal sinus rhythm ECG tested by the model. A single AI-enabled ECG identified atrial fibrillation with an AUC of 0·87 (95% CI 0·86-0·88), sensitivity of 79·0% (77·5-80·4), specificity of 79·5% (79·0-79·9), F1 score of 39·2% (38·1-40·3), and overall accuracy of 79·4% (79·0-79·9). Including all ECGs acquired during the first month of each patient's window of interest (ie, the study start date or 31 days before the first recorded atrial fibrillation ECG) increased the AUC to 0·90 (0·90-0·91), sensitivity to 82·3% (80·9-83·6), specificity to 83·4% (83·0-83·8), F1 score to 45·4% (44·2-46·5), and overall accuracy to 83·3% (83·0-83·7).

INTERPRETATION

An AI-enabled ECG acquired during normal sinus rhythm permits identification at point of care of individuals with atrial fibrillation.

FUNDING

None.

摘要

背景

心房颤动常无症状且因此检测不足,但与中风、心力衰竭和死亡有关。现有的筛查方法需要长时间监测,并且受到成本和低产量的限制。我们旨在开发一种使用机器学习快速、廉价、在床边识别房颤患者的方法。

方法

我们使用卷积神经网络开发了一种人工智能(AI)心电图(ECG),用于检测标准 10 秒 12 导联心电图在窦性心律正常时的房颤心电图特征。我们纳入了 1993 年 12 月 31 日至 2017 年 7 月 21 日期间在梅奥诊所心电图实验室接受至少一次数字、窦性心律正常、标准 10 秒 12 导联仰卧位心电图的 18 岁或以上的所有患者,节律标签由在心脏病专家监督下接受培训的人员验证。我们将至少有一次心电图显示房颤或房扑节律的患者归类为房颤阳性。我们将心电图按 7:1:2 的比例分配到训练、内部验证和测试数据集。我们计算内部验证数据集的接收者操作特征曲线的曲线下面积(AUC)以选择概率阈值,并将其应用于测试数据集。我们通过计算 AUC 以及准确性、敏感性、特异性和 F1 分数(双侧 95%CI)来评估测试数据集上的模型性能。

发现

我们纳入了 180922 名患者的 649931 份窦性心律心电图进行分析:454789 份心电图来自训练数据集的 126526 名患者,64340 份心电图来自内部验证数据集的 18116 名患者,130802 份心电图来自测试数据集的 36280 名患者。在测试数据集的 3051 名(8.4%)患者中,在模型测试的窦性心律 ECG 之前已经确诊为房颤。单个 AI 心电图以 AUC 为 0.87(95%CI 0.86-0.88)、敏感性为 79.0%(77.5-80.4%)、特异性为 79.5%(79.0-79.9%)、F1 分数为 39.2%(38.1-40.3%)和整体准确率为 79.4%(79.0-79.9%)的方式识别房颤。纳入每个患者感兴趣时间段(即研究开始日期或首次记录房颤心电图前的 31 天)内获得的所有心电图,可将 AUC 提高到 0.90(0.90-0.91)、敏感性提高到 82.3%(80.9-83.6%)、特异性提高到 83.4%(83.0-83.8%)、F1 分数提高到 45.4%(44.2-46.5%)和整体准确率提高到 83.3%(83.0-83.7%)。

结论

在窦性心律期间获取的人工智能心电图可在床边识别房颤患者。

资金

无。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验