Suppr超能文献

基于脑部和膝盖3T磁共振成像训练的深度学习重建对腰椎1.5T磁共振成像的适用性。

Applicability of deep learning-based reconstruction trained by brain and knee 3T MRI to lumbar 1.5T MRI.

作者信息

Kashiwagi Nobuo, Tanaka Hisashi, Yamashita Yuichi, Takahashi Hiroto, Kassai Yoshimori, Fujiwara Masahiro, Tomiyama Noriyuki

机构信息

Department of Future Diagnostic Radiology, Osaka University Graduate School of Medicine, Osaka, Japan.

Division of Health Science, Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Osaka, Japan.

出版信息

Acta Radiol Open. 2021 Jun 18;10(6):20584601211023939. doi: 10.1177/20584601211023939. eCollection 2021 Jun.

Abstract

BACKGROUND

Several deep learning-based methods have been proposed for addressing the long scanning time of magnetic resonance imaging. Most are trained using brain 3T magnetic resonance images, but is unclear whether performance is affected when applying these methods to different anatomical sites and at different field strengths.

PURPOSE

To validate the denoising performance of deep learning-based reconstruction method trained by brain and knee 3T magnetic resonance images when applied to lumbar 1.5T magnetic resonance images.

MATERIAL AND METHODS

Using a 1.5T scanner, we obtained lumber T2-weighted sequences in 10 volunteers using three different scanning times: 228 s (standard), 119 s (double-fast), and 68 s (triple-fast). We compared the images obtained by the standard sequence with those obtained by the deep learning-based reconstruction-applied faster sequences.

RESULTS

Signal-to-noise ratio values were significantly higher for deep learning-based reconstruction-double-fast than for standard and did not differ significantly between deep learning-based reconstruction-triple-fast and standard. Contrast-to-noise ratio values also did not differ significantly between deep learning-based reconstruction-triple-fast and standard. Qualitative scores for perceived signal-to-noise ratio and overall image quality were significantly higher for deep learning-based reconstruction-double fast and deep learning-based reconstruction-triple-fast than for standard. Average scores for sharpness, contrast, and structure visibility were equal to or higher for deep learning-based reconstruction-double-fast and deep learning-based reconstruction-triple-fast than for standard, but the differences were not statistically significant. The average scores for artifact were lower for deep learning-based reconstruction-double-fast and deep learning-based reconstruction-triple-fast than for standard, but the differences were not statistically significant.

CONCLUSION

The deep learning-based reconstruction method trained by 3T brain and knee images may reduce the scanning time of 1.5T lumbar magnetic resonance images by one-third without sacrificing image quality.

摘要

背景

已经提出了几种基于深度学习的方法来解决磁共振成像扫描时间长的问题。大多数方法是使用脑部3T磁共振图像进行训练的,但尚不清楚将这些方法应用于不同解剖部位和不同场强时,其性能是否会受到影响。

目的

验证基于深度学习的重建方法在应用于腰椎1.5T磁共振图像时的去噪性能,该方法由脑部和膝部3T磁共振图像训练而成。

材料与方法

使用1.5T扫描仪,我们在10名志愿者中获得了腰椎T2加权序列,采用三种不同的扫描时间:228秒(标准)、119秒(双快速)和68秒(三快速)。我们将标准序列获得的图像与基于深度学习重建的更快序列获得的图像进行了比较。

结果

基于深度学习重建的双快速序列的信噪比显著高于标准序列,基于深度学习重建的三快速序列与标准序列之间的信噪比无显著差异。基于深度学习重建的三快速序列与标准序列之间的对比度噪声比也无显著差异。基于深度学习重建的双快速序列和基于深度学习重建的三快速序列在感知信噪比和整体图像质量方面的定性评分显著高于标准序列。基于深度学习重建的双快速序列和基于深度学习重建的三快速序列在锐度、对比度和结构可见性方面的平均评分等于或高于标准序列,但差异无统计学意义。基于深度学习重建的双快速序列和基于深度学习重建的三快速序列在伪影方面的平均评分低于标准序列,但差异无统计学意义。

结论

由3T脑部和膝部图像训练的基于深度学习的重建方法可以将1.5T腰椎磁共振图像的扫描时间缩短三分之一,而不牺牲图像质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/119c/8216362/37a26bc9db16/10.1177_20584601211023939-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验