Suppr超能文献

人工智能在磁共振图像重建中的应用:临床医师的综述。

Artificial Intelligence for MR Image Reconstruction: An Overview for Clinicians.

机构信息

Department of Radiology, NYU School of Medicine/NYU Langone Health, New York, New York, USA.

Center for Biomedical Imaging, New York University School of Medicine, New York, New York, USA.

出版信息

J Magn Reson Imaging. 2021 Apr;53(4):1015-1028. doi: 10.1002/jmri.27078. Epub 2020 Feb 12.

Abstract

Artificial intelligence (AI) shows tremendous promise in the field of medical imaging, with recent breakthroughs applying deep-learning models for data acquisition, classification problems, segmentation, image synthesis, and image reconstruction. With an eye towards clinical applications, we summarize the active field of deep-learning-based MR image reconstruction. We review the basic concepts of how deep-learning algorithms aid in the transformation of raw k-space data to image data, and specifically examine accelerated imaging and artifact suppression. Recent efforts in these areas show that deep-learning-based algorithms can match and, in some cases, eclipse conventional reconstruction methods in terms of image quality and computational efficiency across a host of clinical imaging applications, including musculoskeletal, abdominal, cardiac, and brain imaging. This article is an introductory overview aimed at clinical radiologists with no experience in deep-learning-based MR image reconstruction and should enable them to understand the basic concepts and current clinical applications of this rapidly growing area of research across multiple organ systems.

摘要

人工智能(AI)在医学影像学领域展现出巨大的潜力,最近的突破应用深度学习模型进行数据采集、分类问题、分割、图像合成和图像重建。着眼于临床应用,我们总结了基于深度学习的磁共振图像重建的活跃领域。我们回顾了深度学习算法如何帮助将原始 k 空间数据转换为图像数据的基本概念,并特别研究了加速成像和伪影抑制。这些领域的最新研究表明,基于深度学习的算法在许多临床成像应用中,包括肌肉骨骼、腹部、心脏和脑部成像,在图像质量和计算效率方面可以与传统的重建方法相匹配,在某些情况下甚至可以超越传统的重建方法。本文是一篇面向没有基于深度学习的磁共振图像重建经验的临床放射科医生的介绍性综述,旨在使他们能够理解这一快速发展的多器官系统研究领域的基本概念和当前临床应用。

相似文献

7

引用本文的文献

本文引用的文献

1
Accelerated Simultaneous Multi-Slice MRI using Subject-Specific Convolutional Neural Networks.使用特定主题卷积神经网络的加速同步多切片磁共振成像
Conf Rec Asilomar Conf Signals Syst Comput. 2018 Oct;2018:1636-1640. doi: 10.1109/ACSSC.2018.8645313. Epub 2019 Feb 21.
2
ACCELERATING MAGNETIC RESONANCE IMAGING VIA DEEP LEARNING.通过深度学习加速磁共振成像
Proc IEEE Int Symp Biomed Imaging. 2016 Apr;2016:514-517. doi: 10.1109/ISBI.2016.7493320. Epub 2016 Jun 16.
4
Applications of Deep Learning to Neuro-Imaging Techniques.深度学习在神经成像技术中的应用。
Front Neurol. 2019 Aug 14;10:869. doi: 10.3389/fneur.2019.00869. eCollection 2019.
6
k-Space deep learning for reference-free EPI ghost correction.k 空间深度学习用于无参考 EPI 鬼影校正。
Magn Reson Med. 2019 Dec;82(6):2299-2313. doi: 10.1002/mrm.27896. Epub 2019 Jul 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验