Department of Mathematics, Technical University Munich, Bolzmannstr. 3, 85748, Garching, Germany.
Department of Mathematics, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QJ, UK.
Bull Math Biol. 2021 Jul 2;83(8):88. doi: 10.1007/s11538-021-00898-0.
Since Noble adapted in 1962 the model of Hodgkin and Huxley to fit Purkinje fibres, the refinement of models for cardiomyocytes has continued. Most of these models are high-dimensional systems of coupled equations so that the possible mathematical analysis is quite limited, even numerically. This has inspired the development of reduced, phenomenological models that preserve qualitatively the main feature of cardiomyocyte's dynamics. In this paper, we present a systematic comparison of the dynamics between two notable low-dimensional models, the FitzHugh-Nagumo model (FitzHugh in Bull Math Biophys 17:257-269, 1955, J Gen Physiol 43:867-896, 1960, Biophys J 1:445-466, 1961) as a prototype of excitable behaviour and a polynomial version of the Karma model (Karma in Phys Rev Lett 71(7):16, 1993, Chaos 4:461, 1994) which is specifically developed to fit cardiomyocyte's behaviour well. We start by introducing the models and considering their pure ODE versions. We analyse the ODEs employing the main ideas and steps used in the setting of geometric singular perturbation theory. Next, we turn to the spatially extended models, where we focus on travelling wave solutions in 1D. Finally, we perform numerical simulations of the 1D PDE Karma model varying model parameters in order to systematically investigate the impact on wave propagation velocity and shape. In summary, our study provides a reference regarding key similarities as well as key differences of the two models.
自 1962 年 Noble 对 Hodgkin 和 Huxley 模型进行改编以适应浦肯野纤维以来,心肌细胞模型的改进一直在继续。这些模型大多数是耦合方程的高维系统,因此可能的数学分析相当有限,即使是数值分析。这激发了简化的、现象学模型的发展,这些模型在定性上保留了心肌细胞动力学的主要特征。在本文中,我们对两个著名的低维模型——FitzHugh-Nagumo 模型(FitzHugh 在 Bull Math Biophys 17:257-269, 1955, J Gen Physiol 43:867-896, 1960, Biophys J 1:445-466, 1961 中作为兴奋行为的原型)和 Karma 模型的多项式版本(Karma 在 Phys Rev Lett 71(7):16, 1993, Chaos 4:461, 1994 中特别开发以很好地适应心肌细胞的行为)进行了系统比较。我们首先介绍模型,并考虑它们的纯 ODE 版本。我们使用几何奇异摄动理论的主要思想和步骤来分析 ODE。接下来,我们转向空间扩展模型,在那里我们专注于一维的行波解。最后,我们通过改变模型参数对一维 PDE Karma 模型进行数值模拟,以便系统地研究对波传播速度和形状的影响。总之,我们的研究提供了关于这两个模型的关键相似性和关键差异的参考。