Suppr超能文献

[离体心脏电标测及心房颤动基质智能标记的进展]

[Developments of ex vivo cardiac electrical mapping and intelligent labeling of atrial fibrillation substrates].

作者信息

Chang Yi, Dong Ming, Wang Bin, Fan Lihong

机构信息

State Key Library of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, P. R. China.

The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024 Feb 25;41(1):184-190. doi: 10.7507/1001-5515.202211046.

Abstract

Cardiac three-dimensional electrophysiological labeling technology is the prerequisite and foundation of atrial fibrillation (AF) ablation surgery, and invasive labeling is the current clinical method, but there are many shortcomings such as large trauma, long procedure duration, and low success rate. In recent years, because of its non-invasive and convenient characteristics, labeling has become a new direction for the development of electrophysiological labeling technology. With the rapid development of computer hardware and software as well as the accumulation of clinical database, the application of deep learning technology in electrocardiogram (ECG) data is becoming more extensive and has made great progress, which provides new ideas for the research of cardiac mapping and intelligent labeling of AF substrates. This paper reviewed the research progress in the fields of ECG forward problem, ECG inverse problem, and the application of deep learning in AF labeling, discussed the problems of intelligent labeling of AF substrates and the possible approaches to solve them, prospected the challenges and future directions for cardiac electrophysiology labeling.

摘要

心脏三维电生理标测技术是心房颤动(AF)消融手术的前提和基础,侵入性标测是目前的临床方法,但存在创伤大、手术时间长、成功率低等诸多缺点。近年来,非侵入性标测因其无创、便捷的特点,成为电生理标测技术发展的新方向。随着计算机软硬件的快速发展以及临床数据库的积累,深度学习技术在心电图(ECG)数据中的应用越来越广泛并取得了很大进展,这为心房颤动基质的心脏标测和智能标测研究提供了新思路。本文综述了心电图正问题、心电图逆问题以及深度学习在房颤标测中的应用领域的研究进展,讨论了心房颤动基质智能标测存在的问题及可能的解决途径,展望了心脏电生理标测面临的挑战和未来方向。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验