Hu Jiyuan, Wang Chan, Blaser Martin J, Li Huilin
Division of Biostatistics, Department of Population Health, New York University Grossman School of Medicine, New York, USA.
Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA.
Biometrics. 2022 Dec;78(4):1686-1698. doi: 10.1111/biom.13515. Epub 2021 Aug 1.
Recent studies have suggested that the temporal dynamics of the human microbiome may have associations with human health and disease. An increasing number of longitudinal microbiome studies, which record time to disease onset, aim to identify candidate microbes as biomarkers for prognosis. Owing to the ultra-skewness and sparsity of microbiome proportion (relative abundance) data, directly applying traditional statistical methods may result in substantial power loss or spurious inferences. We propose a novel joint modeling framework [JointMM], which is comprised of two sub-models: a longitudinal sub-model called zero-inflated scaled-beta generalized linear mixed-effects regression to depict the temporal structure of microbial proportions among subjects; and a survival sub-model to characterize the occurrence of an event and its relationship with the longitudinal microbiome proportions. JointMM is specifically designed to handle the zero-inflated and highly skewed longitudinal microbial proportion data and examine whether the temporal pattern of microbial presence and/or the nonzero microbial proportions are associated with differences in the time to an event. The longitudinal sub-model of JointMM also provides the capacity to investigate how the (time-varying) covariates are related to the temporal microbial presence/absence patterns and/or the changing trend in nonzero proportions. Comprehensive simulations and real data analyses are used to assess the statistical efficiency and interpretability of JointMM.
近期研究表明,人类微生物组的时间动态可能与人类健康和疾病存在关联。越来越多记录疾病发病时间的纵向微生物组研究旨在识别候选微生物作为预后生物标志物。由于微生物组比例(相对丰度)数据的极度偏态性和稀疏性,直接应用传统统计方法可能会导致大量的功效损失或虚假推断。我们提出了一种新颖的联合建模框架[JointMM],它由两个子模型组成:一个纵向子模型,称为零膨胀缩放贝塔广义线性混合效应回归,用于描述个体间微生物比例的时间结构;以及一个生存子模型,用于表征事件的发生及其与纵向微生物组比例的关系。JointMM专门设计用于处理零膨胀和高度偏态的纵向微生物比例数据,并检验微生物存在的时间模式和/或非零微生物比例是否与事件发生时间的差异相关。JointMM的纵向子模型还提供了研究(随时间变化的)协变量如何与微生物存在/不存在的时间模式和/或非零比例变化趋势相关的能力。通过综合模拟和实际数据分析来评估JointMM的统计效率和可解释性。