Suppr超能文献

零膨胀纵向比例与事件发生时间数据的联合建模及其在肠道微生物组研究中的应用。

Joint modeling of zero-inflated longitudinal proportions and time-to-event data with application to a gut microbiome study.

作者信息

Hu Jiyuan, Wang Chan, Blaser Martin J, Li Huilin

机构信息

Division of Biostatistics, Department of Population Health, New York University Grossman School of Medicine, New York, USA.

Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA.

出版信息

Biometrics. 2022 Dec;78(4):1686-1698. doi: 10.1111/biom.13515. Epub 2021 Aug 1.

Abstract

Recent studies have suggested that the temporal dynamics of the human microbiome may have associations with human health and disease. An increasing number of longitudinal microbiome studies, which record time to disease onset, aim to identify candidate microbes as biomarkers for prognosis. Owing to the ultra-skewness and sparsity of microbiome proportion (relative abundance) data, directly applying traditional statistical methods may result in substantial power loss or spurious inferences. We propose a novel joint modeling framework [JointMM], which is comprised of two sub-models: a longitudinal sub-model called zero-inflated scaled-beta generalized linear mixed-effects regression to depict the temporal structure of microbial proportions among subjects; and a survival sub-model to characterize the occurrence of an event and its relationship with the longitudinal microbiome proportions. JointMM is specifically designed to handle the zero-inflated and highly skewed longitudinal microbial proportion data and examine whether the temporal pattern of microbial presence and/or the nonzero microbial proportions are associated with differences in the time to an event. The longitudinal sub-model of JointMM also provides the capacity to investigate how the (time-varying) covariates are related to the temporal microbial presence/absence patterns and/or the changing trend in nonzero proportions. Comprehensive simulations and real data analyses are used to assess the statistical efficiency and interpretability of JointMM.

摘要

近期研究表明,人类微生物组的时间动态可能与人类健康和疾病存在关联。越来越多记录疾病发病时间的纵向微生物组研究旨在识别候选微生物作为预后生物标志物。由于微生物组比例(相对丰度)数据的极度偏态性和稀疏性,直接应用传统统计方法可能会导致大量的功效损失或虚假推断。我们提出了一种新颖的联合建模框架[JointMM],它由两个子模型组成:一个纵向子模型,称为零膨胀缩放贝塔广义线性混合效应回归,用于描述个体间微生物比例的时间结构;以及一个生存子模型,用于表征事件的发生及其与纵向微生物组比例的关系。JointMM专门设计用于处理零膨胀和高度偏态的纵向微生物比例数据,并检验微生物存在的时间模式和/或非零微生物比例是否与事件发生时间的差异相关。JointMM的纵向子模型还提供了研究(随时间变化的)协变量如何与微生物存在/不存在的时间模式和/或非零比例变化趋势相关的能力。通过综合模拟和实际数据分析来评估JointMM的统计效率和可解释性。

相似文献

2
Zero-Inflated gaussian mixed models for analyzing longitudinal microbiome data.
PLoS One. 2020 Nov 9;15(11):e0242073. doi: 10.1371/journal.pone.0242073. eCollection 2020.
4
Testing latent classes in gut microbiome data using generalized Poisson regression models.
Stat Med. 2024 Jan 15;43(1):102-124. doi: 10.1002/sim.9944. Epub 2023 Nov 3.
5
A two-part mixed-effects model for analyzing longitudinal microbiome compositional data.
Bioinformatics. 2016 Sep 1;32(17):2611-7. doi: 10.1093/bioinformatics/btw308. Epub 2016 May 14.
6
A joint modeling approach for longitudinal microbiome data improves ability to detect microbiome associations with disease.
PLoS Comput Biol. 2020 Dec 14;16(12):e1008473. doi: 10.1371/journal.pcbi.1008473. eCollection 2020 Dec.
7
Joint modeling of zero-inflated longitudinal measurements and time-to-event outcomes with applications to dynamic prediction.
Stat Methods Med Res. 2024 Oct;33(10):1731-1767. doi: 10.1177/09622802241268466. Epub 2024 Oct 7.
8
Bayesian variable selection for multivariate zero-inflated models: Application to microbiome count data.
Biostatistics. 2020 Jul 1;21(3):499-517. doi: 10.1093/biostatistics/kxy067.
9
A Bayesian zero-inflated Dirichlet-multinomial regression model for multivariate compositional count data.
Biometrics. 2023 Dec;79(4):3239-3251. doi: 10.1111/biom.13853. Epub 2023 Apr 3.

引用本文的文献

2
MiRKAT-MC: A Distance-Based Microbiome Kernel Association Test With Multi-Categorical Outcomes.
Front Genet. 2022 Apr 1;13:841764. doi: 10.3389/fgene.2022.841764. eCollection 2022.

本文引用的文献

2
Temporal development of the gut microbiome in early childhood from the TEDDY study.
Nature. 2018 Oct;562(7728):583-588. doi: 10.1038/s41586-018-0617-x. Epub 2018 Oct 24.
3
Microbiome Datasets Are Compositional: And This Is Not Optional.
Front Microbiol. 2017 Nov 15;8:2224. doi: 10.3389/fmicb.2017.02224. eCollection 2017.
4
Negative binomial mixed models for analyzing microbiome count data.
BMC Bioinformatics. 2017 Jan 3;18(1):4. doi: 10.1186/s12859-016-1441-7.
5
Antibiotic-mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice.
Nat Microbiol. 2016 Aug 22;1(11):16140. doi: 10.1038/nmicrobiol.2016.140.
6
Joint modelling of time-to-event and multivariate longitudinal outcomes: recent developments and issues.
BMC Med Res Methodol. 2016 Sep 7;16(1):117. doi: 10.1186/s12874-016-0212-5.
7
Microbiome-wide association studies link dynamic microbial consortia to disease.
Nature. 2016 Jul 7;535(7610):94-103. doi: 10.1038/nature18850.
8
A two-part mixed-effects model for analyzing longitudinal microbiome compositional data.
Bioinformatics. 2016 Sep 1;32(17):2611-7. doi: 10.1093/bioinformatics/btw308. Epub 2016 May 14.
9
Zero-Inflated Beta Regression for Differential Abundance Analysis with Metagenomics Data.
J Comput Biol. 2016 Feb;23(2):102-110. doi: 10.1089/cmb.2015.0157. Epub 2015 Dec 16.
10
The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes.
Cell Host Microbe. 2015 Feb 11;17(2):260-73. doi: 10.1016/j.chom.2015.01.001. Epub 2015 Feb 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验