Population Health & Genomics, School of Medicine, University of Dundee, Dundee, UK.
Clinical Pharmacy Department, College of Pharmacy, Umm Al-Qura University, Mecca, Saudi Arabia.
Clin Pharmacol Ther. 2021 Sep;110(3):816-825. doi: 10.1002/cpt.2352. Epub 2021 Jul 23.
Real-world prescribing of drugs differs from the experimental systems, physiological-pharmacokinetic models, and clinical trials used in drug development and licensing, with drugs often used in patients with multiple comorbidities with resultant polypharmacy. The increasing availability of large biobanks linked to electronic healthcare records enables the potential to identify novel drug-gene interactions in large populations of patients. In this study we used three Scottish cohorts and UK Biobank to identify drug-gene interactions for the 50 most commonly used drugs and 162 variants in genes involved in drug pharmacokinetics. We defined two phenotypes based upon prescribing behavior-drug-stop or dose-decrease. Using this approach, we replicate 11 known drug-gene interactions including, for example, CYP2C9/CYP2C8 variants and sulfonylurea/thiazolidinedione prescribing and ABCB1/ABCG2 variants and statin prescribing. We identify eight novel associations after Bonferroni correction, three of which are replicated or validated in the UK Biobank or have other supporting results: The C-allele at rs4918758 in CYP2C9 was associated with a 25% (15-44%) lower odds of dose reduction of quinine, P = 1.6 × 10 ; the A-allele at rs9895420 in ABCC3 was associated with a 46% (24-62%) reduction in odds of dose reduction with doxazosin, P = 1.2 × 10 , and altered blood pressure response in the UK Biobank; the CYP2D6*2 variant was associated with a 30% (18-40%) reduction in odds of stopping ramipril treatment, P = 1.01 × 10 , with similar results seen for enalapril and lisinopril and with other CYP2D6 variants. This study highlights the scope of using large population bioresources linked to medical record data to explore drug-gene interactions at scale.
在药物开发和许可过程中,实际的药物处方与实验系统、生理-药代动力学模型和临床试验不同,药物通常用于患有多种合并症的患者,导致多种药物联合使用。随着与电子医疗记录相关的大型生物库的日益普及,有可能在大量患者群体中识别新的药物-基因相互作用。在这项研究中,我们使用了三个苏格兰队列和英国生物库,以确定涉及药物药代动力学的 162 个基因中的 50 种最常用药物和 162 个变体的药物-基因相互作用。我们基于处方行为-药物停止或剂量减少定义了两种表型。使用这种方法,我们复制了 11 个已知的药物-基因相互作用,例如 CYP2C9/CYP2C8 变体与磺酰脲/噻唑烷二酮的处方和 ABCB1/ABCG2 变体与他汀类药物的处方。在经过 Bonferroni 校正后,我们确定了 8 个新的关联,其中 3 个在英国生物库中得到复制或验证,或者有其他支持结果:CYP2C9 中的 rs4918758C 等位基因与奎宁剂量减少的几率降低 25%(15-44%)有关,P = 1.6×10-5;ABCC3 中的 rs9895420A 等位基因与多沙唑嗪剂量减少的几率降低 46%(24-62%)有关,P = 1.2×10-5,并且在英国生物库中改变了血压反应;CYP2D6*2 变体与雷米普利治疗停止的几率降低 30%(18-40%)有关,P = 1.01×10-5,与依那普利和赖诺普利相似,并且与其他 CYP2D6 变体也相似。本研究强调了使用与医疗记录数据相关的大型人群生物资源在大规模探索药物-基因相互作用方面的范围。