Suppr超能文献

利用大规模生物样本库电子健康记录提升心血管代谢疾病药物的药物遗传学研究。

Leveraging large-scale biobank EHRs to enhance pharmacogenetics of cardiometabolic disease medications.

作者信息

Sadler Marie C, Apostolov Alexander, Cevallos Caterina, Auwerx Chiara, Ribeiro Diogo M, Altman Russ B, Kutalik Zoltán

机构信息

University Center for Primary Care and Public Health, Lausanne, Switzerland.

Swiss Institute of Bioinformatics, Lausanne, Switzerland.

出版信息

Nat Commun. 2025 Mar 25;16(1):2913. doi: 10.1038/s41467-025-58152-3.

Abstract

Electronic health records (EHRs) coupled with large-scale biobanks offer great promises to unravel the genetic underpinnings of treatment efficacy. However, medication-induced biomarker trajectories stemming from such records remain poorly studied. Here, we extract clinical and medication prescription data from EHRs and conduct GWAS and rare variant burden tests in the UK Biobank (discovery) and the All of Us program (replication) on ten cardiometabolic drug response outcomes including lipid response to statins, HbA1c response to metformin and blood pressure response to antihypertensives (N = 932-28,880). Our discovery analyses in participants of European ancestry recover previously reported pharmacogenetic signals at genome-wide significance level (APOE, LPA and SLCO1B1) and a novel rare variant association in GIMAP5 with HbA1c response to metformin. Importantly, these associations are treatment-specific and not associated with biomarker progression in medication-naive individuals. We also found polygenic risk scores to predict drug response, though they explained less than 2% of the variance. In summary, we present an EHR-based framework to study the genetics of drug response and systematically investigated the common and rare pharmacogenetic contribution to cardiometabolic drug response phenotypes in 41,732 UK Biobank and 14,277 All of Us participants.

摘要

电子健康记录(EHRs)与大规模生物样本库相结合,为揭示治疗效果的遗传基础带来了巨大希望。然而,源于此类记录的药物诱导生物标志物轨迹仍未得到充分研究。在这里,我们从电子健康记录中提取临床和药物处方数据,并在英国生物样本库(发现队列)和“我们所有人”计划(验证队列)中对十种心脏代谢药物反应结果进行全基因组关联研究(GWAS)和罕见变异负担测试,这些结果包括他汀类药物的血脂反应、二甲双胍的糖化血红蛋白(HbA1c)反应以及抗高血压药物的血压反应(样本量N = 932 - 28,880)。我们在欧洲血统参与者中的发现性分析在全基因组显著水平上恢复了先前报道的药物遗传学信号(载脂蛋白E基因(APOE)、载脂蛋白A基因(LPA)和有机阴离子转运多肽1B1基因(SLCO1B1)),以及一个与二甲双胍的HbA1c反应相关的GIMAP5基因中的新型罕见变异关联。重要的是,这些关联是特定于治疗的,与未服用药物个体的生物标志物进展无关。我们还发现多基因风险评分可预测药物反应,尽管它们解释的变异小于2%。总之,我们提出了一个基于电子健康记录的框架来研究药物反应的遗传学,并系统地研究了41,732名英国生物样本库参与者和14,277名“我们所有人”计划参与者中常见和罕见药物遗传学对心脏代谢药物反应表型的贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90d5/11937416/3f4f32ef0cfa/41467_2025_58152_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验