Suppr超能文献

在室内环境中,气溶胶纳米颗粒的去除与凝结、沉积和通风的作用。

Contributions of Coagulation, Deposition, and Ventilation to the Removal of Airborne Nanoparticles in Indoor Environments.

机构信息

Department of Architectural Engineering, Soongsil University, Seoul 06978, Republic of Korea.

Wallace Research, Santa Rosa, California 95409, United States.

出版信息

Environ Sci Technol. 2021 Jul 20;55(14):9730-9739. doi: 10.1021/acs.est.0c08739. Epub 2021 Jul 2.

Abstract

Airborne nanoparticles are frequently released in occupied spaces due to episodic indoor source activities. Once generated, nanoparticles undergo aerosol transformation processes such as coagulation and deposition. These aerosol processes lead to changes in particle concentration and size distribution over time and accordingly affect human exposure to nanoparticles. The present study establishes a framework for an indoor particle dynamic model that can predict time- and size-dependent particle concentrations after episodic indoor emission events. The model was evaluated with six experimental data sets obtained from previous measurement studies in the literature. The indoor particle dynamic model quantified the relative contributions of three particle loss mechanisms (i.e., coagulation, deposition, and ventilation) to the total reduction in number concentration. The results show that particle coagulation and indoor surface deposition are two dominant processes responsible for temporal changes in particle size and concentration following indoor emission events. The first-order equivalent coagulation loss rate notably varies with indoor emission source and accounts for up to 59% of the total particle loss for burning a candle, 42% for broiling a fish, and 10% for burning incense. The results reveal that while the coagulation loss rate changes markedly with the particle concentration and source type, the deposition loss rate is more dependent on particle size. Compared to coagulation and deposition, the effect of ventilation is marginal for most of the nanoparticle emission events indoors; however, ventilation loss becomes pronounced with the decrease of particle concentration below 5 × 10 cm, especially for particles larger than 100 nm in aerodynamic diameter.

摘要

由于间歇性的室内源活动,空气中的纳米颗粒经常在有人居住的空间中释放。一旦产生,纳米颗粒就会经历气溶胶转化过程,如凝聚和沉积。这些气溶胶过程会导致颗粒浓度和粒径分布随时间发生变化,从而影响人体对纳米颗粒的暴露。本研究建立了一个室内颗粒动力学模型框架,该模型可以预测间歇性室内排放事件后随时间和粒径变化的颗粒浓度。该模型使用文献中之前的测量研究获得的六个实验数据集进行了评估。室内颗粒动力学模型量化了三种颗粒损失机制(即凝聚、沉积和通风)对总数浓度减少的相对贡献。结果表明,颗粒凝聚和室内表面沉积是导致室内排放事件后粒径和浓度随时间变化的两个主要过程。一级等效凝聚损失速率明显随室内排放源而变化,对于燃烧蜡烛,其占总颗粒损失的 59%,烤鱼占 42%,焚香占 10%。结果表明,虽然凝聚损失速率随颗粒浓度和源类型明显变化,但沉积损失速率更依赖于颗粒粒径。与凝聚和沉积相比,通风对室内大多数纳米颗粒排放事件的影响微不足道;然而,当颗粒浓度低于 5×10^-5cm 时,通风损失变得明显,特别是对于空气动力学直径大于 100nm 的颗粒。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验