Fang Zongtang, Confer Matthew P, Wang Yixiao, Wang Qiang, Kunz M Ross, Dufek Eric J, Liaw Boryann, Klein Tonya M, Dixon David A, Fushimi Rebecca
Biological and Chemical Science and Engineering Department, Idaho National Laboratory, Idaho Falls, Idaho 83415, United States.
Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487, United States.
J Am Chem Soc. 2021 Jul 14;143(27):10261-10274. doi: 10.1021/jacs.1c03812. Epub 2021 Jul 2.
Surface impurities involving parasitic reactions and gas evolution contribute to the degradation of high Ni content LiNiMnCoO (NMC) cathode materials. The transient kinetic technique of temporal analysis of products (TAP), density functional theory, and infrared spectroscopy have been used to study the formation of surface impurities on varying nickel content NMC materials (NMC811, NMC622, NMC532, NMC433, NMC111) in the presence of CO and HO. CO reactivity on a clean surface as characterized by CO conversion rate in the TAP reactor follows the order: NMC811 > NMC622 > NMC532 > NMC433 > NMC111. The capacity of CO uptake follows a different order: NMC532 > NMC433 > NMC622 > NMC811 > NMC111. Moisture pretreatment slows down the direct CO adsorption process and creates additional active sites for CO adsorption. Electronic structure calculations predict that the (012) surface is more reactive than the (1014) surface for CO and HO adsorption. CO adsorption leading to carbonate formation is exothermic with formation of ion pairs. The average CO binding energies on the different materials follow the CO reactivity order. Water hydroxylates the (012) surface and surface OH groups favor bicarbonate formation. Water creates more active sites for CO adsorption on the (1014) surface due to hydrogen bonding. The composition of surface impurities formed in ambient air exposure is dependent on water concentration and the percentage of different crystal planes. Different surface reactivities suggest that battery performance degradation due to surface impurities can be mitigated by precise control of the dominant surfaces in NMC materials.
涉及寄生反应和气体析出的表面杂质会导致高镍含量的锂镍锰钴氧化物(NMC)正极材料的降解。采用产物瞬态动力学分析(TAP)技术、密度泛函理论和红外光谱法,研究了在CO和H₂O存在的情况下,不同镍含量的NMC材料(NMC811、NMC622、NMC532、NMC433、NMC111)表面杂质的形成。以TAP反应器中的CO转化率表征的清洁表面上的CO反应活性遵循以下顺序:NMC811>NMC622>NMC532>NMC433>NMC111。CO的吸附容量遵循不同的顺序:NMC532>NMC433>NMC622>NMC811>NMC111。水分预处理减缓了直接CO吸附过程,并为CO吸附创造了额外的活性位点。电子结构计算预测,对于CO和H₂O吸附,(012)表面比(1014)表面更具反应活性。导致碳酸盐形成的CO吸附是放热的,并形成离子对。不同材料上的平均CO结合能遵循CO反应活性顺序。水使(012)表面羟基化,表面OH基团有利于碳酸氢盐的形成。由于氢键作用,水在(1014)表面为CO吸附创造了更多活性位点。在环境空气中暴露形成的表面杂质的组成取决于水浓度和不同晶面的百分比。不同的表面反应活性表明,通过精确控制NMC材料中的主要表面,可以减轻由于表面杂质导致的电池性能下降。