Suppr超能文献

LiYClBr与高压阴极和锂金属阳极的界面稳定性及反应机理:从头算模拟的见解

Interface Stability and Reaction Mechanisms of LiYClBr with High-Voltage Cathodes and Li Metal Anode: Insights from Ab Initio Simulations.

作者信息

Golov Andrey, Lian Jian Xiang, Carrasco Javier

机构信息

Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), 01510 Vitoria-Gasteiz, Spain.

IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain.

出版信息

ACS Appl Mater Interfaces. 2024 Oct 23;16(42):57870-57877. doi: 10.1021/acsami.4c12938. Epub 2024 Oct 9.

Abstract

Recent advancements in battery technology emphasize the critical role of solid electrolytes in enhancing the performance and safety of next-generation batteries. In this study, we investigate the interface stability and reaction mechanisms of LiYClBr, a promising halide-based solid electrolyte, in contact with high-voltage Ni-Mn-Co (NMC) cathodes and a Li metal anode using ab initio molecular dynamics simulations. Our findings reveal that LiYClBr reacts with charged NMC cathodes. This reaction involves changes in the oxidation states of Br anions in LiYClBr and d-element cations in NMC, as well as the diffusion of Li ions from the solid electrolyte to the cathode to maintain charge balance. The reaction is confined to the interface, suggesting bulk stability. Conversely, the Li/LiYClBr interface exhibits significant instability, with a chemical reaction that results in substantial structural changes and the formation of LiCl and LiBr at the solid electrolyte surface and metallic Y at the Li anode surface. These insights provide valuable information for optimizing interfacial design, aiming at improving the performance and reliability of all-solid-state batteries using halide solid electrolytes.

摘要

电池技术的最新进展凸显了固体电解质在提升下一代电池性能和安全性方面的关键作用。在本研究中,我们使用从头算分子动力学模拟,研究了一种有前景的卤化物基固体电解质LiYClBr与高压镍锰钴(NMC)阴极和锂金属阳极接触时的界面稳定性及反应机制。我们的研究结果表明,LiYClBr与带电的NMC阴极发生反应。该反应涉及LiYClBr中Br阴离子和NMC中d元素阳离子氧化态的变化,以及锂离子从固体电解质扩散到阴极以维持电荷平衡。反应局限于界面,表明体相稳定性。相反,Li/LiYClBr界面表现出显著的不稳定性,发生化学反应,导致大量结构变化,并在固体电解质表面形成LiCl和LiBr,在锂阳极表面形成金属Y。这些见解为优化界面设计提供了有价值的信息,旨在提高使用卤化物固体电解质的全固态电池的性能和可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cd6/11503608/89293d8aa2ab/am4c12938_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验