Suppr超能文献

一种用于锂金属电池的由非质子动态聚合物网络构成的自修复塑料陶瓷电解质。

A self-healing plastic ceramic electrolyte by an aprotic dynamic polymer network for lithium metal batteries.

作者信息

He Yubin, Wang Chunyang, Zhang Rui, Zou Peichao, Chen Zhouyi, Bak Seong-Min, Trask Stephen E, Du Yonghua, Lin Ruoqian, Hu Enyuan, Xin Huolin L

机构信息

Department of Physics and Astronomy, University of California, Irvine, CA, USA.

National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA.

出版信息

Nat Commun. 2024 Nov 19;15(1):10015. doi: 10.1038/s41467-024-53869-z.

Abstract

Oxide ceramic electrolytes (OCEs) have great potential for solid-state lithium metal (Li) battery applications because, in theory, their high elastic modulus provides better resistance to Li dendrite growth. However, in practice, OCEs can hardly survive critical current densities higher than 1 mA/cm. Key issues that contribute to the breakdown of OCEs include Li penetration promoted by grain boundaries (GBs), uncontrolled side reactions at electrode-OCE interfaces, and, equally importantly, defects evolution (e.g., void growth and crack propagation) that leads to local current concentration and mechanical failure inside and on OCEs. Here, taking advantage of a dynamically crosslinked aprotic polymer with non-covalent -CH⋯CF bonds, we developed a plastic ceramic electrolyte (PCE) by hybridizing the polymer framework with ionically conductive ceramics. Using in-situ synchrotron X-ray technique and Cryogenic transmission electron microscopy (Cryo-TEM), we uncover that the PCE exhibits self-healing/repairing capability through a two-step dynamic defects removal mechanism. This significantly suppresses the generation of hotspots for Li penetration and chemomechanical degradations, resulting in durability beyond 2000 hours in Li-Li cells at 1 mA/cm. Furthermore, by introducing a polyacrylate buffer layer between PCE and Li-anode, long cycle life >3600 cycles was achieved when paired with a 4.2 V zero-strain cathode, all under near-zero stack pressure.

摘要

氧化物陶瓷电解质(OCEs)在固态锂金属(Li)电池应用中具有巨大潜力,因为从理论上讲,其高弹性模量能更好地抵抗锂枝晶生长。然而,在实际应用中,OCEs在高于1 mA/cm²的临界电流密度下几乎无法存活。导致OCEs失效的关键问题包括晶界(GBs)促进的锂渗透、电极-OCE界面处不受控制的副反应,以及同样重要的缺陷演变(如空洞生长和裂纹扩展),这会导致OCE内部和表面的局部电流集中和机械故障。在此,我们利用具有非共价-CH⋯CF键的动态交联非质子聚合物,通过将聚合物骨架与离子导电陶瓷杂化,开发出一种塑性陶瓷电解质(PCE)。利用原位同步加速器X射线技术和低温透射电子显微镜(Cryo-TEM),我们发现PCE通过两步动态缺陷去除机制展现出自愈合/修复能力。这显著抑制了锂渗透热点的产生以及化学机械降解,使得Li-Li电池在1 mA/cm²下的耐久性超过2000小时。此外,通过在PCE和锂阳极之间引入聚丙烯酸酯缓冲层,当与4.2 V零应变阴极配对时,在接近零的堆叠压力下实现了大于3600次循环的长循环寿命。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04f7/11576998/62688b33dc7e/41467_2024_53869_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验