Suppr超能文献

硫化聚丙烯腈阴极微观结构对锂硫电池电化学性能的影响

Impact of the Sulfurized Polyacrylonitrile Cathode Microstructure on the Electrochemical Performance of Lithium-Sulfur Batteries.

作者信息

Moschner Robin, Gerle Martina, Danner Timo, Simanjuntak Esther Kezia, Michalowski Peter, Latz Arnulf, Nojabaee Maryam, Kwade Arno, Friedrich K A

机构信息

Institute for Particle Technology, Technische Universität Braunschweig, Volkmaroder Straße 5, D-38104, Braunschweig, Germany.

Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Pfaffenwaldring 38-40, D-70569, Stuttgart, Germany.

出版信息

Adv Sci (Weinh). 2025 Apr;12(15):e2415436. doi: 10.1002/advs.202415436. Epub 2025 Feb 22.

Abstract

The growing demand for advanced energy storage systems requires the development of next-generation battery technologies with superior energy density and cycle stability, with lithium-sulfur (Li-S) batteries representing a promising solution. Sulfur-containing polyacrylonitrile cathodes (SPAN) for Li-S batteries are a significant advancement for this next-generation battery chemistry, addressing the major issue of limited cycle life encountered in conventional carbon/sulfur composite cathodes. In the presented study, the influence of available ionic and electronic conduction pathways within the cathode on the electrochemical performance of SPAN-based Li-S batteries is studied in details. To this end, a series of SPAN cathodes with different microstructures is prepared by adapting the compression degree of calendering. Mechanical and morphological characterizations confirm a pronounced springback effect due to a characteristic elastic deformation behavior of SPAN. Electrochemical impedance spectroscopy (EIS) shows increased cathode impedance values with multiple overlapping processes in the high- to mid-frequency region in highly compressed SPAN cathodes. Moreover, while the (first) discharge capacity is unaffected, the subsequent charge capacity decreases substantially for highly compressed cathodes. The electrochemical experiments and electrochemical continuum simulations confirm that this phenomenon is mainly due to the disturbance of the electronic percolation pathways caused by the springback behavior during calendering.

摘要

对先进储能系统日益增长的需求,要求开发具有卓越能量密度和循环稳定性的下一代电池技术,锂硫(Li-S)电池是一个很有前景的解决方案。用于Li-S电池的含硫聚丙烯腈阴极(SPAN)是这种下一代电池化学的一项重大进展,解决了传统碳/硫复合阴极中遇到的循环寿命有限的主要问题。在本研究中,详细研究了阴极内可用的离子和电子传导途径对基于SPAN的Li-S电池电化学性能的影响。为此,通过调整压延的压缩程度制备了一系列具有不同微观结构的SPAN阴极。机械和形态表征证实,由于SPAN具有特征性的弹性变形行为,存在明显的回弹效应。电化学阻抗谱(EIS)显示,在高度压缩的SPAN阴极中,高频到中频区域存在多个重叠过程,阴极阻抗值增加。此外,虽然(首次)放电容量不受影响,但高度压缩的阴极随后的充电容量大幅下降。电化学实验和电化学连续介质模拟证实,这种现象主要是由于压延过程中的回弹行为导致电子渗流途径受到干扰。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26e1/12005800/23474981179c/ADVS-12-2415436-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验