Division of Insurance Medicine, Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden.
Department of Political Sciences, University of Pisa, Via F. Serafini 3, 56126, Pisa, Italy.
BMC Musculoskelet Disord. 2021 Jul 2;22(1):603. doi: 10.1186/s12891-021-04400-8.
Predicting the duration of sickness absence (SA) among sickness absent patients is a task many sickness certifying physicians as well as social insurance officers struggle with. Our aim was to develop a prediction model for prognosticating the duration of SA due to knee osteoarthritis.
A population-based prospective study of SA spells was conducted using comprehensive microdata linked from five Swedish nationwide registers. All 12,098 new SA spells > 14 days due to knee osteoarthritis in 1/1 2010 through 30/6 2012 were included for individuals 18-64 years. The data was split into a development dataset (70 %, n =8468) and a validation data set (n =3690) for internal validation. Piecewise-constant hazards regression was performed to prognosticate the duration of SA (overall duration and duration > 90, >180, or > 365 days). Possible predictors were selected based on the log-likelihood loss when excluding them from the model.
Of all SA spells, 53 % were > 90 days and 3 % >365 days. Factors included in the final model were age, sex, geographical region, extent of sickness absence, previous sickness absence, history of specialized outpatient healthcare and/or inpatient healthcare, employment status, and educational level. The model was well calibrated. Overall, discrimination was poor (c = 0.53, 95 % confidence interval (CI) 0.52-0.54). For predicting SA > 90 days, discrimination as measured by AUC was 0.63 (95 % CI 0.61-0.65), for > 180 days, 0.69 (95 % CI 0.65-0.71), and for SA > 365 days, AUC was 0.75 (95 % CI 0.72-0.78).
It was possible to predict patients at risk of long-term SA (> 180 days) with acceptable precision. However, the prediction of duration of SA spells due to knee osteoarthritis has room for improvement.
预测请病假(SA)患者的病假持续时间是许多开具病假证明的医生和社会保险官员都难以应对的任务。我们的目的是开发一种预测模型,以预测膝关节骨关节炎导致的 SA 持续时间。
使用从五个瑞典全国性登记处链接的综合微观数据,进行了一项基于人群的 SA 发作前瞻性研究。纳入了 2010 年 1 月 1 日至 2012 年 6 月 30 日期间因膝关节骨关节炎而新出现的持续时间超过 14 天的所有 12098 个 SA 发作(18-64 岁的个体)。将数据分为开发数据集(70%,n=8468)和验证数据集(n=3690),用于内部验证。分段常数风险回归用于预测 SA 的持续时间(总持续时间和持续时间>90 天、>180 天或>365 天)。从模型中排除这些预测因素后,根据对数似然损失选择可能的预测因素。
所有 SA 发作中,53%的持续时间超过 90 天,3%的持续时间超过 365 天。最终模型中包含的因素有年龄、性别、地理位置、病假程度、既往病假、专门门诊和/或住院医疗史、就业状况和教育水平。该模型校准良好。总体而言,区分度较差(c=0.53,95%置信区间(CI)0.52-0.54)。预测 SA>90 天的 AUC 为 0.63(95%CI 0.61-0.65),预测>180 天的 AUC 为 0.69(95%CI 0.65-0.71),预测 SA>365 天的 AUC 为 0.75(95%CI 0.72-0.78)。
可以以可接受的精度预测患有长期 SA(>180 天)风险的患者。然而,膝关节骨关节炎导致的 SA 持续时间的预测仍有改进的空间。