Suppr超能文献

髋和膝关节骨关节炎的数字自我管理与工作和活动障碍轨迹。

Digital self-management of hip and knee osteoarthritis and trajectories of work and activity impairments.

机构信息

Department of Clinical Sciences Lund, Orthopaedics, Clinical Epidemiology Unit, Lund University, Lund, Sweden.

Centre for Economic Demography, Lund University, Lund, Sweden.

出版信息

BMC Musculoskelet Disord. 2023 Mar 18;24(1):207. doi: 10.1186/s12891-023-06322-z.

Abstract

OBJECTIVE

To investigate the trajectories of work and activity impairments among people participating in a digital self-management program for osteoarthritis (OA).

METHODS

We conducted an observational longitudinal study using data for baseline, 3, 6, 9 and 12 months follow ups from people participating in a digital OA treatment between June 2018 and September 2021. The Work Productivity and Activity Impairment-Osteoarthritis (WPAI-OA) questionnaire was used to measure work and activity impairments. We applied linear mixed models and group-based trajectory modelling (GBTM) to assess the trajectories of work and activity impairments and their variability. Dominance analysis was performed to explore the relative importance of baseline characteristics in predicting the trajectory subgroup membership.

RESULTS

A total of 14,676 participants with mean (± standard deviation) age 64.0 (± 9.1) years and 75.5% females were included. The adjusted mean improvements in work impairment from baseline were 5.8% (95% CI 5.3, 6.4) to 6.1% (95% CI 5.5, 6.8). The corresponding figures for activity impairment were 9.4% (95% CI 9.0, 9.7) to 11.3% (95% CI 10.8, 11.8). GBTM identified five (low baseline-declining, moderate baseline-declining, high baseline-declining, very high baseline-substantially declining, and very high baseline-persistent) and three (low baseline-declining, mild baseline-declining, high baseline-declining) subgroups with distinct trajectories of activity and work impairments. Dominance analysis showed that baseline pain was the most important predictor of membership in trajectory subgroups.

CONCLUSION

While participation in a digital self-management program for OA was, on average, associated with improvements in work and activity impairments, there were substantial variations among the participants. Baseline pain may provide useful insights to predict trajectories of work and activity impairments.

摘要

目的

探究参与骨关节炎(OA)数字自我管理计划人群的工作和活动障碍轨迹。

方法

我们开展了一项观察性纵向研究,数据来自 2018 年 6 月至 2021 年 9 月期间参与数字 OA 治疗的人群的基线、3、6、9 和 12 个月随访。使用工作生产力和活动障碍-骨关节炎(WPAI-OA)问卷来衡量工作和活动障碍。我们应用线性混合模型和基于群组的轨迹建模(GBTM)来评估工作和活动障碍的轨迹及其可变性。优势分析用于探索基线特征对预测轨迹亚组归属的相对重要性。

结果

共纳入 14676 名参与者,平均(±标准差)年龄为 64.0(±9.1)岁,75.5%为女性。与基线相比,工作障碍的调整后平均改善为 5.8%(95%CI 5.3, 6.4)至 6.1%(95%CI 5.5, 6.8)。活动障碍的相应数据为 9.4%(95%CI 9.0, 9.7)至 11.3%(95%CI 10.8, 11.8)。GBTM 确定了五个(基线低-下降、基线中-下降、基线高-下降、基线非常高-显著下降和基线非常高-持续下降)和三个(基线低-下降、基线轻-下降、基线高-下降)具有不同活动和工作障碍轨迹的亚组。优势分析显示,基线疼痛是预测轨迹亚组归属的最重要指标。

结论

虽然参与 OA 数字自我管理计划平均与工作和活动障碍的改善相关,但参与者之间存在很大差异。基线疼痛可能为预测工作和活动障碍轨迹提供有用的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d230/10024391/6ca3764e637b/12891_2023_6322_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验