Suppr超能文献

机器学习在心脏手术后 ICU 入住期间预测术后心房颤动方面优于现有临床评分工具。

Machine Learning Outperforms Existing Clinical Scoring Tools in the Prediction of Postoperative Atrial Fibrillation During Intensive Care Unit Admission After Cardiac Surgery.

机构信息

Department of Medicine, University of Melbourne, Melbourne, Vic, Australia.

Department of Medicine, Monash University, Melbourne, Vic, Australia.

出版信息

Heart Lung Circ. 2021 Dec;30(12):1929-1937. doi: 10.1016/j.hlc.2021.05.101. Epub 2021 Jun 30.

Abstract

OBJECTIVE(S): Using the Medical Information Mart for Intensive Care III (MIMIC-III) database, we compared the performance of machine learning (ML) to the to the established gold standard scoring tool (POAF Score) in predicting postoperative atrial fibrillation (POAF) during intensive care unit (ICU) admission after cardiac surgery.

METHODS

Random forest classifier (RF), decision tree classifier (DT), logistic regression (LR), K neighbours classifier (KNN), support vector machine (SVM), and gradient boosted machine (GBM) were compared to the POAF Score. Cross-validation was used to assess the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity of ML models. POAF Score performance confidence intervals were generated using 1,000 bootstraps. Risk profiles for GBM were generated using Shapley additive values.

RESULTS

A total of 6,349 ICU admissions encompassing 6,040 patients were included. POAF occurred in 1,364 of the 6,349 admissions (21.5%). For predicting POAF during ICU admission after cardiac surgery, GBM, LR, RF, KNN, SVM and DT achieved an AUC of 0.74 (0.71-0.77), 0.73 (0.71-0.75), 0.72 (0.69-0.75), 0.68 (0.67-0.69), 0.67 (0.66-0.68) and 0.59 (0.55-0.63) respectively. The POAF Score AUC was 0.63 (0.62-0.64). Shapley additive values analysis of GBM generated patient level explanations for each prediction.

CONCLUSION

Machine learning models based on readily available preoperative data can outperform clinical scoring tools for predicting POAF during ICU admission after cardiac surgery. Explanatory models are shown to have potential in personalising POAF risk profiles for patients by illustrating probabilistic input variable contributions. Future research is required to evaluate the clinical utility and safety of implementing ML-driven tools for POAF prediction.

摘要

目的

利用医疗信息监护 III 数据库(MIMIC-III),我们比较了机器学习(ML)与既定的黄金标准评分工具(POAF 评分)在预测心脏手术后 ICU 入住期间术后心房颤动(POAF)的性能。

方法

随机森林分类器(RF)、决策树分类器(DT)、逻辑回归(LR)、K 近邻分类器(KNN)、支持向量机(SVM)和梯度提升机(GBM)与 POAF 评分进行了比较。交叉验证用于评估 ML 模型的接受者操作特征曲线(ROC)下面积(AUC)、敏感性和特异性。使用 1000 次自举法生成 POAF 评分性能置信区间。使用 Shapley 加性值生成 GBM 的风险概况。

结果

共纳入 6349 例 ICU 入住患者,共 6040 例。在 6349 例 ICU 入住中,有 1364 例(21.5%)发生 POAF。对于预测心脏手术后 ICU 入住期间的 POAF,GBM、LR、RF、KNN、SVM 和 DT 的 AUC 分别为 0.74(0.71-0.77)、0.73(0.71-0.75)、0.72(0.69-0.75)、0.68(0.67-0.69)、0.67(0.66-0.68)和 0.59(0.55-0.63)。POAF 评分的 AUC 为 0.63(0.62-0.64)。GBM 的 Shapley 加性值分析为每个预测生成了患者级别的解释。

结论

基于术前易于获得的数据的机器学习模型可以优于临床评分工具,用于预测心脏手术后 ICU 入住期间的 POAF。解释模型具有通过说明概率输入变量的贡献来为患者定制 POAF 风险概况的潜力。需要进一步研究评估实施 ML 驱动的 POAF 预测工具的临床实用性和安全性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验