Division of Phoniatrics and Pediatric Audiology, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Waldstr. 1, 91054, Erlangen, Germany.
Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Henkestr. 91, 91054, Erlangen, Germany.
Sci Rep. 2021 Jul 2;11(1):13760. doi: 10.1038/s41598-021-93149-0.
High-speed videoendoscopy is an important tool to study laryngeal dynamics, to quantify vocal fold oscillations, to diagnose voice impairments at laryngeal level and to monitor treatment progress. However, there is a significant lack of an open source, expandable research tool that features latest hardware and data analysis. In this work, we propose an open research platform termed OpenHSV that is based on state-of-the-art, commercially available equipment and features a fully automatic data analysis pipeline. A publicly available, user-friendly graphical user interface implemented in Python is used to interface the hardware. Video and audio data are recorded in synchrony and are subsequently fully automatically analyzed. Video segmentation of the glottal area is performed using efficient deep neural networks to derive glottal area waveform and glottal midline. Established quantitative, clinically relevant video and audio parameters were implemented and computed. In a preliminary clinical study, we recorded video and audio data from 28 healthy subjects. Analyzing these data in terms of image quality and derived quantitative parameters, we show the applicability, performance and usefulness of OpenHSV. Therefore, OpenHSV provides a valid, standardized access to high-speed videoendoscopy data acquisition and analysis for voice scientists, highlighting its use as a valuable research tool in understanding voice physiology. We envision that OpenHSV serves as basis for the next generation of clinical HSV systems.
高速视频喉镜是研究喉部动力学、量化声带振动、诊断喉部嗓音障碍和监测治疗进展的重要工具。然而,目前缺乏一个开源的、可扩展的研究工具,该工具具有最新的硬件和数据分析功能。在本工作中,我们提出了一个名为 OpenHSV 的开放研究平台,它基于最先进的商业可用设备,并具有全自动数据分析管道。使用 Python 实现的、用户友好的图形用户界面用于与硬件接口。视频和音频数据以同步方式记录,并随后进行全自动分析。使用高效的深度神经网络对声门区域进行视频分割,以获得声门区域波形和声门中线。实现并计算了已建立的定量的、临床相关的视频和音频参数。在初步的临床研究中,我们从 28 位健康受试者中记录了视频和音频数据。根据图像质量和得出的定量参数分析这些数据,我们展示了 OpenHSV 的适用性、性能和实用性。因此,OpenHSV 为语音科学家提供了一种有效的、标准化的高速视频喉镜数据采集和分析方法,突出了其作为理解语音生理学的有价值的研究工具的用途。我们设想 OpenHSV 将成为下一代临床 HSV 系统的基础。