Suppr超能文献

PhyliCS:一个用于探索 scCNA 数据和量化空间肿瘤异质性的 Python 库。

PhyliCS: a Python library to explore scCNA data and quantify spatial tumor heterogeneity.

机构信息

Department of Control and Computer Science, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Turin, Italy.

Department of Oncology, University of Torino, Strada Provinciale, 142 - KM 3.95, 10060, Candiolo, Turin, Italy.

出版信息

BMC Bioinformatics. 2021 Jul 3;22(1):360. doi: 10.1186/s12859-021-04277-3.

Abstract

BACKGROUND

Tumors are composed by a number of cancer cell subpopulations (subclones), characterized by a distinguishable set of mutations. This phenomenon, known as intra-tumor heterogeneity (ITH), may be studied using Copy Number Aberrations (CNAs). Nowadays ITH can be assessed at the highest possible resolution using single-cell DNA (scDNA) sequencing technology. Additionally, single-cell CNA (scCNA) profiles from multiple samples of the same tumor can in principle be exploited to study the spatial distribution of subclones within a tumor mass. However, since the technology required to generate large scDNA sequencing datasets is relatively recent, dedicated analytical approaches are still lacking.

RESULTS

We present PhyliCS, the first tool which exploits scCNA data from multiple samples from the same tumor to estimate whether the different clones of a tumor are well mixed or spatially separated. Starting from the CNA data produced with third party instruments, it computes a score, the Spatial Heterogeneity score, aimed at distinguishing spatially intermixed cell populations from spatially segregated ones. Additionally, it provides functionalities to facilitate scDNA analysis, such as feature selection and dimensionality reduction methods, visualization tools and a flexible clustering module.

CONCLUSIONS

PhyliCS represents a valuable instrument to explore the extent of spatial heterogeneity in multi-regional tumour sampling, exploiting the potential of scCNA data.

摘要

背景

肿瘤由许多癌细胞亚群(亚克隆)组成,其特征是具有可区分的突变集。这种现象称为肿瘤内异质性(ITH),可以使用拷贝数异常(CNAs)进行研究。如今,使用单细胞 DNA(scDNA)测序技术可以在尽可能高的分辨率评估 ITH。此外,原则上可以利用同一肿瘤的多个样本的单细胞 CNA(scCNA)图谱来研究肿瘤内克隆的空间分布。然而,由于生成大型 scDNA 测序数据集的技术相对较新,因此仍然缺乏专门的分析方法。

结果

我们提出了 PhyliCS,这是第一个利用来自同一肿瘤的多个样本的 scCNA 数据来估计肿瘤的不同克隆是否混合良好或空间分离的工具。它从第三方仪器生成的 CNA 数据出发,计算一个分数,即空间异质性分数,旨在区分空间混合的细胞群体和空间分离的细胞群体。此外,它还提供了一些功能来促进 scDNA 分析,例如特征选择和降维方法、可视化工具和灵活的聚类模块。

结论

PhyliCS 是一种有价值的工具,可以利用 scCNA 数据探索多区域肿瘤采样中的空间异质性程度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c2f/8254361/66f2106a57a9/12859_2021_4277_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验