Suppr超能文献

评估单细胞 DNA 测序数据中拷贝数变异检测方法的性能。

Assessing the performance of methods for copy number aberration detection from single-cell DNA sequencing data.

机构信息

Department of Computer Science, Rice University, Houston, Texas, United States of America.

Department of Computer Science, Florida State University, Tallahassee, Florida, United States of America.

出版信息

PLoS Comput Biol. 2020 Jul 13;16(7):e1008012. doi: 10.1371/journal.pcbi.1008012. eCollection 2020 Jul.

Abstract

Single-cell DNA sequencing technologies are enabling the study of mutations and their evolutionary trajectories in cancer. Somatic copy number aberrations (CNAs) have been implicated in the development and progression of various types of cancer. A wide array of methods for CNA detection has been either developed specifically for or adapted to single-cell DNA sequencing data. Understanding the strengths and limitations that are unique to each of these methods is very important for obtaining accurate copy number profiles from single-cell DNA sequencing data. We benchmarked three widely used methods-Ginkgo, HMMcopy, and CopyNumber-on simulated as well as real datasets. To facilitate this, we developed a novel simulator of single-cell genome evolution in the presence of CNAs. Furthermore, to assess performance on empirical data where the ground truth is unknown, we introduce a phylogeny-based measure for identifying potentially erroneous inferences. While single-cell DNA sequencing is very promising for elucidating and understanding CNAs, our findings show that even the best existing method does not exceed 80% accuracy. New methods that significantly improve upon the accuracy of these three methods are needed. Furthermore, with the large datasets being generated, the methods must be computationally efficient.

摘要

单细胞 DNA 测序技术使研究癌症中的突变及其进化轨迹成为可能。体细胞拷贝数异常(CNA)与各种类型癌症的发生和发展有关。已经开发了许多用于 CNA 检测的方法,这些方法要么是专门为单细胞 DNA 测序数据开发的,要么是针对该数据进行了调整。了解这些方法各自独特的优缺点对于从单细胞 DNA 测序数据中获得准确的拷贝数谱非常重要。我们在模拟数据集和真实数据集上对三种广泛使用的方法——Ginkgo、HMMcopy 和 CopyNumber-on 进行了基准测试。为了便于进行此操作,我们开发了一种新的单细胞基因组在 CNA 存在下进化的模拟器。此外,为了评估在未知真实情况的经验数据上的性能,我们引入了一种基于系统发育的方法来识别可能错误的推断。虽然单细胞 DNA 测序在阐明和理解 CNA 方面非常有前景,但我们的研究结果表明,即使是最好的现有方法也无法超过 80%的准确性。需要新的方法来显著提高这三种方法的准确性。此外,随着生成的大型数据集,方法必须具有计算效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2f0/7377518/b093997921f6/pcbi.1008012.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验