Department of Computational Medicine and Bioinformatics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
Microsoft Inc., Redmond, WA, USA.
Nat Commun. 2020 Sep 8;11(1):4469. doi: 10.1038/s41467-020-18169-2.
Dissecting tumor heterogeneity is a key to understanding the complex mechanisms underlying drug resistance in cancers. The rich literature of pioneering studies on tumor heterogeneity analysis spurred a recent community-wide benchmark study that compares diverse modeling algorithms. Here we present FastClone, a top-performing algorithm in accuracy in this benchmark. FastClone improves over existing methods by allowing the deconvolution of subclones that have independent copy number variation events within the same chromosome regions. We characterize the behavior of FastClone in identifying subclones using stage III colon cancer primary tumor samples as well as simulated data. It achieves approximately 100-fold acceleration in computation for both simulated and patient data. The efficacy of FastClone will allow its application to large-scale data and clinical data, and facilitate personalized medicine in cancers.
解析肿瘤异质性是理解癌症耐药性背后复杂机制的关键。大量关于肿瘤异质性分析的开创性研究文献推动了最近的一项全行业基准研究,该研究比较了各种建模算法。在这里,我们展示了 FastClone,这是该基准测试中准确性最高的算法。FastClone 通过允许在同一染色体区域内具有独立拷贝数变异事件的亚克隆进行去卷积,从而改进了现有方法。我们使用 III 期结肠癌原发肿瘤样本和模拟数据来描述 FastClone 识别亚克隆的行为。它在计算模拟和患者数据时都实现了大约 100 倍的加速。FastClone 的功效将使其能够应用于大规模数据和临床数据,并促进癌症的个性化医疗。
J Comput Biol. 2020-4
J Comput Biol. 2018-7
J Bioinform Comput Biol. 2015-10
Clin Cancer Res. 2017-12-4
Cell Syst. 2019-6-19
Front Pharmacol. 2025-4-30
Bioinformatics. 2024-8-2
Acta Neuropathol Commun. 2024-6-12
Nat Biotechnol. 2025-4
Nucleic Acids Res. 2020-1-8
Front Oncol. 2015-3-3
Genetics. 1998-4