Microbial Ecology, Center for Applied Geoscience, University of Tuebingen, Tuebingen, Germany.
Geomicrobiology, Center for Applied Geoscience, University of Tuebingen, Tuebingen, Germany.
Microb Physiol. 2021;31(3):280-295. doi: 10.1159/000517083. Epub 2021 Jul 2.
Fe(II) oxidation coupled to nitrate reduction (NRFO) has been described for many environments. Yet very few autotrophic microorganisms catalysing NRFO have been cultivated and their diversity, as well as their mechanisms for NRFO in situ remain unclear. A novel autotrophic NRFO enrichment culture, named culture BP, was obtained from freshwater sediment. After more than 20 transfers, culture BP oxidized 8.22 mM of Fe(II) and reduced 2.42 mM of nitrate within 6.5 days under autotrophic conditions. We applied metagenomic, metatranscriptomic, and metaproteomic analyses to culture BP to identify the microorganisms involved in autotrophic NRFO and to unravel their metabolism. Overall, twelve metagenome-assembled genomes (MAGs) were constructed, including a dominant Gallionellaceae sp. MAG (≥71% relative abundance). Genes and transcripts associated with potential Fe(II) oxidizers in culture BP, identified as a Gallionellaceae sp., Noviherbaspirillum sp., and Thiobacillus sp., were likely involved in metal oxidation (e.g., cyc2, mtoA), denitrification (e.g., nirK/S, norBC), carbon fixation (e.g., rbcL), and oxidative phosphorylation. The putative Fe(II)-oxidizing protein Cyc2 was detected for the Gallionellaceae sp. Overall, a complex network of microbial interactions among several Fe(II) oxidizers and denitrifiers was deciphered in culture BP that might resemble NRFO mechanisms in situ. Furthermore, 16S rRNA gene amplicon sequencing from environmental samples revealed 36 distinct Gallionellaceae taxa, including the key player of NRFO from culture BP (approx. 0.13% relative abundance in situ). Since several of these in situ-detected Gallionellaceae taxa were closely related to the key player in culture BP, this suggests that the diversity of organisms contributing to NRFO might be higher than currently known.
亚铁氧化耦合硝酸盐还原(NRFO)在许多环境中都有描述。然而,能够催化 NRFO 的自养微生物却很少被培养,它们的多样性以及它们在原位进行 NRFO 的机制仍不清楚。一种新型的自养 NRFO 富集培养物,命名为培养物 BP,从淡水沉积物中获得。在自养条件下,经过 20 多次传代,培养物 BP 在 6.5 天内氧化了 8.22mM 的 Fe(II)并还原了 2.42mM 的硝酸盐。我们应用宏基因组、宏转录组和宏蛋白质组学分析来研究培养物 BP,以鉴定参与自养 NRFO 的微生物,并揭示它们的代谢途径。总的来说,构建了 12 个宏基因组组装基因组(MAG),其中包括一个优势的泉古菌科(Gallionellaceae)sp. MAG(相对丰度≥71%)。与培养物 BP 中潜在的亚铁氧化菌相关的基因和转录本,鉴定为泉古菌科(Gallionellaceae)sp.、新弧菌属(Noviherbaspirillum)sp. 和硫杆菌属(Thiobacillus)sp.,可能参与金属氧化(如 cyc2、mtoA)、反硝化(如 nirK/S、norBC)、碳固定(如 rbcL)和氧化磷酸化。泉古菌科(Gallionellaceae)sp. 中检测到了推定的亚铁氧化蛋白 Cyc2。总的来说,在培养物 BP 中,几个亚铁氧化菌和反硝化菌之间存在复杂的微生物相互作用网络,这可能类似于原位 NRFO 机制。此外,从环境样本中进行的 16S rRNA 基因扩增子测序揭示了 36 种不同的泉古菌科分类群,包括来自培养物 BP 的 NRFO 关键参与者(原位相对丰度约为 0.13%)。由于原位检测到的许多泉古菌科分类群与培养物 BP 中的关键参与者密切相关,这表明参与 NRFO 的生物多样性可能高于目前已知的水平。