Microbial Ecology, Center for Applied Geoscience, University of Tübingen, Tübingen, Germany.
Geomicrobiology, Center for Applied Geoscience, University of Tübingen, Tübingen, Germany.
Appl Environ Microbiol. 2021 Jul 13;87(15):e0049621. doi: 10.1128/AEM.00496-21.
Nitrate reduction coupled to Fe(II) oxidation (NRFO) has been recognized as an environmentally important microbial process in many freshwater ecosystems. However, well-characterized examples of autotrophic nitrate-reducing Fe(II)-oxidizing bacteria are rare, and their pathway of electron transfer as well as their interaction with flanking community members remain largely unknown. Here, we applied meta-omics (i.e., metagenomics, metatranscriptomics, and metaproteomics) to the nitrate-reducing Fe(II)-oxidizing enrichment culture KS growing under autotrophic or heterotrophic conditions and originating from freshwater sediment. We constructed four metagenome-assembled genomes with an estimated completeness of ≥95%, including the key players of NRFO in culture KS, identified as sp. and sp. The sp. and sp. transcripts and proteins likely involved in Fe(II) oxidation (e.g., , , and ), denitrification (e.g., ), and oxidative phosphorylation (e.g., respiratory chain complexes I to V) along with sp. transcripts and proteins for carbon fixation (e.g., ) were detected. Overall, our results indicate that in culture KS, the sp. and sp. are interdependent: while sp. fixes CO and provides organic compounds for sp., sp. likely detoxifies NO through NO reduction and completes denitrification, which cannot be performed by sp. alone. Additionally, the transcripts and partial proteins of - and -type cytochrome suggest the possibility for a microaerophilic lifestyle of the sp., yet culture KS grows under anoxic conditions. Our findings demonstrate that autotrophic NRFO is performed through cooperation among denitrifying and Fe(II)-oxidizing bacteria, which might resemble microbial interactions in freshwater environments. Nitrate-reducing Fe(II)-oxidizing bacteria are widespread in the environment, contribute to nitrate removal, and influence the fate of the greenhouse gases nitrous oxide and carbon dioxide. The autotrophic growth of nitrate-reducing Fe(II)-oxidizing bacteria is rarely investigated and not fully understood. The most prominent model system for this type of study is the enrichment culture KS. To gain insights into the metabolism of nitrate reduction coupled to Fe(II) oxidation in the absence of organic carbon and oxygen, we performed metagenomic, metatranscriptomic, and metaproteomic analyses of culture KS and identified sp. and sp. as interdependent key Fe(II) oxidizers in culture KS. Our work demonstrates that autotrophic nitrate reduction coupled to Fe(II) oxidation is not performed by an individual strain but is a cooperation of at least two members of the bacterial community in culture KS. These findings serve as a foundation for our understanding of nitrate-reducing Fe(II)-oxidizing bacteria in the environment.
硝酸盐还原耦合亚铁氧化(NRFO)已被认为是许多淡水生态系统中重要的微生物过程。然而,能够将硝酸盐还原为亚铁并同时进行氧化作用的自养细菌的实例很少,其电子传递途径以及与毗邻群落成员的相互作用在很大程度上仍不清楚。在这里,我们应用宏基因组学(即宏基因组学、宏转录组学和宏蛋白质组学)对来自淡水沉积物的自养或异养条件下生长的硝酸盐还原亚铁氧化富集培养物 KS 进行了研究。我们构建了四个估计完整性≥95%的宏基因组组装基因组,其中包括培养物 KS 中的 NRFO 的关键参与者,鉴定为 sp. 和 sp. sp. 和 sp. 的铁(II)氧化(例如, 、 、和 )、反硝化(例如, )和氧化磷酸化(例如,呼吸链复合物 I 到 V)以及 sp. 的碳固定(例如, )相关的转录本和蛋白质可能被检测到。总的来说,我们的结果表明,在培养物 KS 中, sp. 和 sp. 相互依存:虽然 sp. 固定 CO 并为 sp. 提供有机化合物,但 sp. 可能通过 NO 还原来解毒 NO 并完成反硝化作用,而这不能仅由 sp. 完成。此外,-和 -型细胞色素的转录本和部分蛋白质表明 sp. 可能具有微好氧生活方式,但培养物 KS 在缺氧条件下生长。我们的发现表明,自养 NRFO 是通过反硝化和亚铁氧化细菌之间的合作来完成的,这可能类似于淡水环境中的微生物相互作用。硝酸盐还原亚铁氧化细菌在环境中广泛存在,有助于硝酸盐的去除,并影响温室气体一氧化二氮和二氧化碳的命运。自养硝酸盐还原亚铁氧化细菌的生长很少被研究,也不完全了解。这种类型研究的最突出的模型系统是富集培养物 KS。为了深入了解在没有有机碳和氧气的情况下硝酸盐还原耦合亚铁氧化的代谢,我们对培养物 KS 进行了宏基因组学、宏转录组学和宏蛋白质组学分析,并鉴定 sp. 和 sp. 是培养物 KS 中相互依赖的关键亚铁氧化菌。我们的工作表明,自养硝酸盐还原耦合亚铁氧化不是由单个菌株完成的,而是培养物 KS 中的至少两个细菌群落成员的合作。这些发现为我们理解环境中的硝酸盐还原亚铁氧化细菌奠定了基础。