Department of Biochemistry, College of Health Sciences, Arsi University, Oromia, Ethiopia.
Department of Medical Laboratory Technology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
Biol Chem. 2021 Jul 7;402(10):1155-1177. doi: 10.1515/hsz-2021-0232. Print 2021 Sep 27.
The main objective of structural biology is to model proteins and other biological macromolecules and link the structural information to function and dynamics. The biological functions of protein molecules and nucleic acids are inherently dependent on their conformational dynamics. Imaging of individual molecules and their dynamic characteristics is an ample source of knowledge that brings new insights about mechanisms of action. The atomic-resolution structural information on most of the biomolecules has been solved by biophysical techniques; either by X-ray diffraction in single crystals or by nuclear magnetic resonance (NMR) spectroscopy in solution. Cryo-electron microscopy (cryo-EM) is emerging as a new tool for analysis of a larger macromolecule that couldn't be solved by X-ray crystallography or NMR. Now a day's low-resolution Cryo-EM is used in combination with either X-ray crystallography or NMR. The present review intends to provide updated information on applications like X-ray crystallography, cryo-EM and NMR which can be used independently and/or together in solving structures of biological macromolecules for our full comprehension of their biological mechanisms.
结构生物学的主要目标是对蛋白质和其他生物大分子进行建模,并将结构信息与功能和动力学联系起来。蛋白质分子和核酸的生物学功能本质上依赖于它们的构象动力学。对单个分子及其动态特性的成像为了解作用机制提供了丰富的知识来源。通过生物物理技术,如在单晶中的 X 射线衍射或在溶液中的核磁共振(NMR)光谱,已经解决了大多数生物分子的原子分辨率结构信息。低温电子显微镜(cryo-EM)作为一种新的工具,正在出现,用于分析无法通过 X 射线晶体学或 NMR 解决的更大的大分子。如今,低分辨率的 cryo-EM 与 X 射线晶体学或 NMR 结合使用。本综述旨在提供有关 X 射线晶体学、cryo-EM 和 NMR 等应用的最新信息,这些应用可独立使用和/或结合使用,以解决生物大分子的结构,从而全面了解其生物学机制。