Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
Clinical and Health Psychology, University of Florida, Gainesville, FL, USA.
J Alzheimers Dis. 2021;82(1):47-57. doi: 10.3233/JAD-201129.
Advantages of digital clock drawing metrics for dementia subtype classification needs examination.
To assess how well kinematic, time-based, and visuospatial features extracted from the digital Clock Drawing Test (dCDT) can classify a combined group of Alzheimer's disease/Vascular Dementia patients versus healthy controls (HC), and classify dementia patients with Alzheimer's disease (AD) versus vascular dementia (VaD).
Healthy, community-dwelling control participants (n = 175), patients diagnosed clinically with Alzheimer's disease (n = 29), and vascular dementia (n = 27) completed the dCDT to command and copy clock drawing conditions. Thirty-seven dCDT command and 37 copy dCDT features were extracted and used with Random Forest classification models.
When HC participants were compared to participants with dementia, optimal area under the curve was achieved using models that combined both command and copy dCDT features (AUC = 91.52%). Similarly, when AD versus VaD participants were compared, optimal area under the curve was, achieved with models that combined both command and copy features (AUC = 76.94%). Subsequent follow-up analyses of a corpus of 10 variables of interest determined using a Gini Index found that groups could be dissociated based on kinematic, time-based, and visuospatial features.
The dCDT is able to operationally define graphomotor output that cannot be measured using traditional paper and pencil test administration in older health controls and participants with dementia. These data suggest that kinematic, time-based, and visuospatial behavior obtained using the dCDT may provide additional neurocognitive biomarkers that may be able to identify and tract dementia syndromes.
数字时钟绘图测度在痴呆亚型分类方面的优势需要进一步研究。
评估从数字时钟测验(dCDT)中提取的运动学、基于时间和视觉空间特征在多大程度上可以将阿尔茨海默病/血管性痴呆患者与健康对照(HC)进行分类,以及将阿尔茨海默病(AD)患者与血管性痴呆(VaD)患者进行分类。
健康的、居住在社区的对照组参与者(n=175)、临床诊断为阿尔茨海默病(n=29)和血管性痴呆(n=27)完成了数字时钟测验的指令和复制时钟绘图条件。提取了 37 个数字时钟测验指令和 37 个复制数字时钟测验特征,并与随机森林分类模型一起使用。
当将 HC 参与者与痴呆患者进行比较时,使用同时结合指令和复制数字时钟测验特征的模型获得了最佳的曲线下面积(AUC=91.52%)。同样,当将 AD 与 VaD 参与者进行比较时,使用同时结合指令和复制特征的模型获得了最佳的曲线下面积(AUC=76.94%)。随后对使用基尼指数确定的 10 个感兴趣变量的语料库进行了后续分析,发现可以根据运动学、基于时间和视觉空间特征来区分组。
数字时钟测验能够操作定义传统纸笔测验管理无法测量的老年健康对照者和痴呆患者的图运动输出。这些数据表明,使用数字时钟测验获得的运动学、基于时间和视觉空间行为可能提供额外的神经认知生物标志物,这些标志物可能能够识别和跟踪痴呆综合征。