Suppr超能文献

用于 AI 辅助时钟绘制测试评估早期视觉空间缺陷的注意力成对交互网络。

Attentive pairwise interaction network for AI-assisted clock drawing test assessment of early visuospatial deficits.

机构信息

Computational Molecular Biology Group, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.

National Nanotechnology Center, National Science and Technology Development Agency, Pathum Thani, Thailand.

出版信息

Sci Rep. 2023 Oct 23;13(1):18113. doi: 10.1038/s41598-023-44723-1.

Abstract

Dementia is a debilitating neurological condition which impairs the cognitive function and the ability to take care of oneself. The Clock Drawing Test (CDT) is widely used to detect dementia, but differentiating normal from borderline cases requires years of clinical experience. Misclassifying mild abnormal as normal will delay the chance to investigate for potential reversible causes or slow down the progression. To help address this issue, we propose an automatic CDT scoring system that adopts Attentive Pairwise Interaction Network (API-Net), a fine-grained deep learning model that is designed to distinguish visually similar images. Inspired by how humans often learn to recognize different objects by looking at two images side-by-side, API-Net is optimized using image pairs in a contrastive manner, as opposed to standard supervised learning, which optimizes a model using individual images. In this study, we extend API-Net to infer Shulman CDT scores from a dataset of 3108 subjects. We compare the performance of API-Net to that of convolutional neural networks: VGG16, ResNet-152, and DenseNet-121. The best API-Net achieves an F1-score of 0.79, which is a 3% absolute improvement over ResNet-152's F1-score of 0.76. The code for API-Net and the dataset used have been made available at https://github.com/cccnlab/CDT-API-Network .

摘要

痴呆症是一种使人衰弱的神经疾病,会损害认知功能和自我照顾能力。画钟测验(CDT)被广泛用于检测痴呆症,但区分正常和边缘病例需要多年的临床经验。将轻度异常误诊为正常,会延迟对潜在可逆原因的调查或减缓进展。为了解决这个问题,我们提出了一种自动 CDT 评分系统,该系统采用了注意力成对交互网络(API-Net),这是一种细粒度的深度学习模型,旨在区分视觉相似的图像。受人类通过并排查看两张图像来学习识别不同物体的启发,API-Net 采用对比的方式对图像对进行优化,而不是标准的监督学习,后者使用单个图像来优化模型。在这项研究中,我们将 API-Net 扩展到从 3108 个对象的数据集推断 Shulman CDT 分数。我们将 API-Net 的性能与卷积神经网络(VGG16、ResNet-152 和 DenseNet-121)进行了比较。API-Net 的最佳 F1 得分为 0.79,比 ResNet-152 的 F1 得分 0.76 提高了 3%。API-Net 的代码和使用的数据集已在 https://github.com/cccnlab/CDT-API-Network 上提供。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bdd/10593802/f6f781e75da1/41598_2023_44723_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验