Lauderdale Jonathan Maitland, Cael B B
Department of Earth, Atmospheric and Planetary Sciences Massachusetts Institute of Technology Cambridge MA USA.
Ocean Biogeosciences National Oceanography Centre Southampton UK.
Geophys Res Lett. 2021 Apr 16;48(7):e2020GL091746. doi: 10.1029/2020GL091746. Epub 2021 Apr 9.
The ocean's "biological pump" significantly modulates atmospheric carbon dioxide levels. However, the complexity and variability of processes involved introduces uncertainty in interpretation of transient observations and future climate projections. Much research has focused on "parametric uncertainty," particularly determining the exponent(s) of a power-law relationship of sinking particle flux with depth. Varying this relationship's functional form introduces additional "structural uncertainty." We use an ocean biogeochemistry model substituting six alternative remineralization profiles fit to a reference power-law curve, to systematically characterize structural uncertainty, which, in atmospheric pCO terms, is roughly 50% of parametric uncertainty associated with varying the power-law exponent within its plausible global range, and similar to uncertainty associated with regional variation in power-law exponents. The substantial contribution of structural uncertainty to total uncertainty highlights the need to improve characterization of biological pump processes, and compare the performance of different profiles within Earth System Models to obtain better constrained climate projections.
海洋的“生物泵”显著调节大气中的二氧化碳水平。然而,所涉及过程的复杂性和变异性给瞬态观测结果的解读以及未来气候预测带来了不确定性。许多研究集中在“参数不确定性”上,特别是确定下沉颗粒通量与深度的幂律关系的指数。改变这种关系的函数形式会引入额外的“结构不确定性”。我们使用一个海洋生物地球化学模型,该模型用六个拟合参考幂律曲线的替代再矿化剖面进行替换,以系统地表征结构不确定性。就大气pCO而言,结构不确定性大致是在其合理的全球范围内改变幂律指数所带来的参数不确定性的50%,并且与幂律指数区域变化所带来的不确定性相似。结构不确定性对总不确定性的重大贡献凸显了改善生物泵过程表征的必要性,并在地球系统模型中比较不同剖面的性能,以获得约束更好的气候预测。