文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

严重急性呼吸综合征冠状病毒2型(SARS-CoV-2)和严重急性呼吸综合征冠状病毒(SARS-CoV)主要蛋白的结构与功能

Structure and Function of Major SARS-CoV-2 and SARS-CoV Proteins.

作者信息

Gorkhali Ritesh, Koirala Prashanna, Rijal Sadikshya, Mainali Ashmita, Baral Adesh, Bhattarai Hitesh Kumar

机构信息

Department of Biotechnology, Kathmandu University, Dhulikhel, Nepal.

出版信息

Bioinform Biol Insights. 2021 Jun 22;15:11779322211025876. doi: 10.1177/11779322211025876. eCollection 2021.


DOI:10.1177/11779322211025876
PMID:34220199
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8221690/
Abstract

SARS-CoV-2 virus, the causative agent of COVID-19 pandemic, has a genomic organization consisting of 16 nonstructural proteins (nsps), 4 structural proteins, and 9 accessory proteins. Relative of SARS-CoV-2, SARS-CoV, has genomic organization, which is very similar. In this article, the function and structure of the proteins of SARS-CoV-2 and SARS-CoV are described in great detail. The nsps are expressed as a single or two polyproteins, which are then cleaved into individual proteins using two proteases of the virus, a chymotrypsin-like protease and a papain-like protease. The released proteins serve as centers of virus replication and transcription. Some of these nsps modulate the host's translation and immune systems, while others help the virus evade the host immune system. Some of the nsps help form replication-transcription complex at double-membrane vesicles. Others, including one RNA-dependent RNA polymerase and one exonuclease, help in the polymerization of newly synthesized RNA of the virus and help minimize the mutation rate by proofreading. After synthesis of the viral RNA, it gets capped. The capping consists of adding GMP and a methylation mark, called cap 0 and additionally adding a methyl group to the terminal ribose called cap1. Capping is accomplished with the help of a helicase, which also helps remove a phosphate, two methyltransferases, and a scaffolding factor. Among the structural proteins, S protein forms the receptor of the virus, which latches on the angiotensin-converting enzyme 2 receptor of the host and N protein binds and protects the genomic RNA of the virus. The accessory proteins found in these viruses are small proteins with immune modulatory roles. Besides functions of these proteins, solved X-ray and cryogenic electron microscopy structures related to the function of the proteins along with comparisons to other coronavirus homologs have been described in the article. Finally, the rate of mutation of SARS-CoV-2 residues of the proteome during the 2020 pandemic has been described. Some proteins are mutated more often than other proteins, but the significance of these mutation rates is not fully understood.

摘要

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)病毒是新冠疫情的病原体,其基因组结构由16种非结构蛋白(nsps)、4种结构蛋白和9种辅助蛋白组成。SARS-CoV-2的近亲SARS-CoV,其基因组结构与之非常相似。在本文中,详细描述了SARS-CoV-2和SARS-CoV蛋白质的功能和结构。nsps以单个或两个多蛋白的形式表达,然后利用病毒的两种蛋白酶,即类胰凝乳蛋白酶和类木瓜蛋白酶,将其切割成单个蛋白质。释放出的蛋白质作为病毒复制和转录的中心。其中一些nsps调节宿主的翻译和免疫系统,而其他nsps则帮助病毒逃避免疫系统。一些nsps有助于在双膜囊泡处形成复制转录复合体。其他nsps,包括一种RNA依赖性RNA聚合酶和一种核酸外切酶,有助于病毒新合成RNA的聚合,并通过校对帮助将突变率降至最低。病毒RNA合成后会进行加帽。加帽包括添加GMP和一个甲基化标记,称为帽0,另外在末端核糖上添加一个甲基,称为帽1。加帽是在一种解旋酶的帮助下完成的,该解旋酶还帮助去除一个磷酸基团、两种甲基转移酶和一个支架因子。在结构蛋白中,S蛋白形成病毒的受体,它锁定在宿主的血管紧张素转换酶2受体上;N蛋白结合并保护病毒的基因组RNA。这些病毒中的辅助蛋白是具有免疫调节作用的小蛋白。除了这些蛋白质的功能外,本文还描述了与蛋白质功能相关的已解析的X射线和低温电子显微镜结构,以及与其他冠状病毒同源物的比较。最后,描述了2020年疫情期间SARS-CoV-2蛋白质组残基的突变率。一些蛋白质比其他蛋白质更容易发生突变,但这些突变率的意义尚未完全明了。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/89b57b232b11/10.1177_11779322211025876-fig23.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/41fc6eb5ca68/10.1177_11779322211025876-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/cc195d6171d2/10.1177_11779322211025876-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/9185f86f6b75/10.1177_11779322211025876-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/a9118dcae192/10.1177_11779322211025876-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/1848e9bddc63/10.1177_11779322211025876-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/88cfada9da2d/10.1177_11779322211025876-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/f45f925c5278/10.1177_11779322211025876-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/e009141c98a0/10.1177_11779322211025876-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/92be0e1c8071/10.1177_11779322211025876-fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/3c18f90c1c98/10.1177_11779322211025876-fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/f8da99ab2186/10.1177_11779322211025876-fig11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/0364e6c12fab/10.1177_11779322211025876-fig12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/6317a3d8cb17/10.1177_11779322211025876-fig13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/7a2031da3967/10.1177_11779322211025876-fig14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/e6b75232f66f/10.1177_11779322211025876-fig15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/3feed0a23443/10.1177_11779322211025876-fig16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/d0b50759533c/10.1177_11779322211025876-fig17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/788f7ee22d68/10.1177_11779322211025876-fig18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/a70dfe3cb5f2/10.1177_11779322211025876-fig19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/87bc5ac32e10/10.1177_11779322211025876-fig20.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/e66d7f686b8a/10.1177_11779322211025876-fig21.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/bf3be1bf1adc/10.1177_11779322211025876-fig22.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/89b57b232b11/10.1177_11779322211025876-fig23.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/41fc6eb5ca68/10.1177_11779322211025876-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/cc195d6171d2/10.1177_11779322211025876-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/9185f86f6b75/10.1177_11779322211025876-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/a9118dcae192/10.1177_11779322211025876-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/1848e9bddc63/10.1177_11779322211025876-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/88cfada9da2d/10.1177_11779322211025876-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/f45f925c5278/10.1177_11779322211025876-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/e009141c98a0/10.1177_11779322211025876-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/92be0e1c8071/10.1177_11779322211025876-fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/3c18f90c1c98/10.1177_11779322211025876-fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/f8da99ab2186/10.1177_11779322211025876-fig11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/0364e6c12fab/10.1177_11779322211025876-fig12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/6317a3d8cb17/10.1177_11779322211025876-fig13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/7a2031da3967/10.1177_11779322211025876-fig14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/e6b75232f66f/10.1177_11779322211025876-fig15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/3feed0a23443/10.1177_11779322211025876-fig16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/d0b50759533c/10.1177_11779322211025876-fig17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/788f7ee22d68/10.1177_11779322211025876-fig18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/a70dfe3cb5f2/10.1177_11779322211025876-fig19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/87bc5ac32e10/10.1177_11779322211025876-fig20.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/e66d7f686b8a/10.1177_11779322211025876-fig21.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/bf3be1bf1adc/10.1177_11779322211025876-fig22.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd8/8221690/89b57b232b11/10.1177_11779322211025876-fig23.jpg

相似文献

[1]
Structure and Function of Major SARS-CoV-2 and SARS-CoV Proteins.

Bioinform Biol Insights. 2021-6-22

[2]
Structural basis for the multimerization of nonstructural protein nsp9 from SARS-CoV-2.

Mol Biomed. 2020

[3]
Properties of Coronavirus and SARS-CoV-2.

Malays J Pathol. 2020-4

[4]
Potential 3-chymotrypsin-like cysteine protease cleavage sites in the coronavirus polyproteins pp1a and pp1ab and their possible relevance to COVID-19 vaccine and drug development.

FASEB J. 2021-5

[5]
H, C, and N backbone chemical shift assignments of the nucleic acid-binding domain of SARS-CoV-2 non-structural protein 3e.

Biomol NMR Assign. 2020-10

[6]
Structure of Nonstructural Protein 1 from SARS-CoV-2.

J Virol. 2021-1-28

[7]
SARS-CoV-2 strategically mimics proteolytic activation of human ENaC.

Elife. 2020-5-26

[8]
Emerging of a SARS-CoV-2 viral strain with a deletion in nsp1.

J Transl Med. 2020-8-31

[9]
[Basic information of Coronavirus].

Uirusu. 2020

[10]
SARS-CoV-2-Virus structure and life cycle.

Prog Mol Biol Transl Sci. 2024

引用本文的文献

[1]
The Role of SARS-CoV-2 Nucleocapsid Protein in Host Inflammation.

Viruses. 2025-7-27

[2]
Vector-borne diseases and their role in COVID-19 dynamics and death rates: focus on India.

Folia Microbiol (Praha). 2025-8-9

[3]
A multi-antigen-based SARS-CoV-2 vaccine provides higher immune responses and protection against SARS-CoV-2 variants.

NPJ Vaccines. 2025-7-19

[4]
Prediction of enzyme inhibition (IC) using a combination of protein-ligand docking and semiempirical quantum mechanics.

J Mol Model. 2025-7-12

[5]
One Health serosurveillance of anti-SARS-CoV-2 antibodies in domestic animals from the metropolitan area of Panama.

Vet World. 2025-5

[6]
Potential blocker of SARS-CoV entry and a narrow functionality of its spike protein motifs on Qubevirus platform.

J Biol Chem. 2025-6-12

[7]
Immunotherapeutic Approach for Improving the Efficacy of a Novel Subunit Vaccine Against SARS-CoV-2 by Cytotoxic T-Lymphocytes (CTL) Epitopes.

Scientifica (Cairo). 2025-5-26

[8]
Construction and validation of a cell based reporter assay for identifying inhibitors of SARS coronavirus 2 RNA dependent RNA polymerase activity.

Sci Rep. 2025-5-26

[9]
Comprehensive analysis of human coronavirus antibody responses in ICU and non-ICU COVID-19 patients reveals IgG3 against SARS-CoV-2 spike protein as a key biomarker of disease severity.

J Med Microbiol. 2025-5

[10]
In Silico and In Vitro development of novel small interfering RNAs (siRNAs) to inhibit SARS-CoV-2.

Comput Struct Biotechnol J. 2025-3-23

本文引用的文献

[1]
Notable sequence homology of the ORF10 protein introspects the architecture of SARS-CoV-2.

Int J Biol Macromol. 2021-6-30

[2]
Structural insight reveals SARS-CoV-2 ORF7a as an immunomodulating factor for human CD14 monocytes.

iScience. 2021-3-19

[3]
One Year of SARS-CoV-2: How Much Has the Virus Changed?

Biology (Basel). 2021-1-26

[4]
Engineering SARS-CoV-2 using a reverse genetic system.

Nat Protoc. 2021-3

[5]
The coronavirus proofreading exoribonuclease mediates extensive viral recombination.

PLoS Pathog. 2021-1

[6]
The SARS-CoV-2 ORF10 is not essential in vitro or in vivo in humans.

PLoS Pathog. 2020-12

[7]
Structural insights into SARS-CoV-2 proteins.

J Mol Biol. 2021-1-22

[8]
Structure of Nonstructural Protein 1 from SARS-CoV-2.

J Virol. 2021-1-28

[9]
Designing of cytotoxic and helper T cell epitope map provides insights into the highly contagious nature of the pandemic novel coronavirus SARS-CoV-2.

R Soc Open Sci. 2020-9-16

[10]
The Enzymatic Activity of the nsp14 Exoribonuclease Is Critical for Replication of MERS-CoV and SARS-CoV-2.

J Virol. 2020-11-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索