Instituto de Patología Experimental (IPE), UNSa-CONICET, Av. Bolivia 5150, Salta, Argentina.
Instituto de Patología Experimental (IPE), UNSa-CONICET, Av. Bolivia 5150, Salta, Argentina.
Infect Genet Evol. 2021 Sep;93:104990. doi: 10.1016/j.meegid.2021.104990. Epub 2021 Jul 2.
Genome-based phylogeny has been proposed to be more accurate than phylogeny based in a few genes as MLST-based phylogeny. However, much is not always better. Here we analyzed 368 complete genomes corresponding to 9 bacterial species in order to address intraspecific phylogeny. The studied species were: Burkholderia pseudomallei, Campylobacter jejuni, Chlamydia trachomatis, Helicobacter pylori, Klebsiella pneumoniae, Listeria monocytogenes, Salmonella enterica, Staphylococcus aureus and Streptococcus pyogenes. The intra-specific phylogenies were inferred using the complete genome sequences of different strains of these species and their MLST schemes. A supermatrix approach was used to infer maximum likelihood phylogenies in both cases. The phylogenetic incongruence between the supermatrix-based genome or MLST tree and individual trees (constructed from genome fragments or MLST genes, respectively) was analyzed. In supermatrix-based trees for genomes, most branches showed a high branch support; however, a high number of branches also showed high percentage of topologically incongruent individual trees. Interestingly, genome and MLST trees showed similar levels of incongruence in the phylogeny for each bacteria specie. Both genome and MLST approaches showed that C. trachomatis and S. aureus have a tree-like evolutionary history (low levels of internal incongruence). Instead, B. pseudomallei and S. pyogenes show high levels of incongruence (network-like evolutionary story) probably caused by HGT (horizontal gene transfer). Concluding, our analysis showed that: high branch supports obtained in genome phylogenies could be an artifact probably caused by data size; MLST is valid to address intraspecific phylogenetic structure; and, each species has its own evolutionary history, which could be affected by HGT to different extents.
基于基因组的系统发育被认为比基于少数基因的系统发育(如 MLST 基于的系统发育)更准确。然而,更多并不总是更好。在这里,我们分析了 368 个完整基因组,这些基因组对应 9 个细菌物种,以解决种内系统发育问题。研究的物种有:类鼻疽伯克霍尔德菌、空肠弯曲菌、沙眼衣原体、幽门螺杆菌、肺炎克雷伯菌、单核细胞增生李斯特菌、沙门氏菌、金黄色葡萄球菌和化脓性链球菌。使用这些物种的不同菌株的全基因组序列及其 MLST 方案推断了种内系统发育。在这两种情况下,都使用超级矩阵方法推断最大似然系统发育。分析了超级矩阵基于基因组或 MLST 树与个体树(分别从基因组片段或 MLST 基因构建)之间的系统发育不一致性。在基于超级矩阵的基因组树中,大多数分支显示出高分支支持;然而,许多分支也显示出与拓扑不一致的个体树的高百分比。有趣的是,基因组和 MLST 树在每个细菌种的系统发育中显示出相似水平的不一致性。基因组和 MLST 方法都表明沙眼衣原体和金黄色葡萄球菌具有树状进化史(低水平的内部不一致性)。相反,类鼻疽伯克霍尔德菌和化脓性链球菌显示出高度的不一致性(网状进化故事),可能是由 HGT(水平基因转移)引起的。总之,我们的分析表明:基因组系统发育中获得的高分支支持可能是由数据大小引起的假象;MLST 可有效解决种内系统发育结构问题;并且,每个物种都有自己的进化历史,可能会受到 HGT 的不同程度的影响。