Suppr超能文献

英国生物库中常见疾病的遗传可解释多重合并症的全球概述。

A global overview of genetically interpretable multimorbidities among common diseases in the UK Biobank.

机构信息

Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, 200433, China.

MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China.

出版信息

Genome Med. 2021 Jul 5;13(1):110. doi: 10.1186/s13073-021-00927-6.

Abstract

BACKGROUND

Multimorbidities greatly increase the global health burdens, but the landscapes of their genetic risks have not been systematically investigated.

METHODS

We used the hospital inpatient data of 385,335 patients in the UK Biobank to investigate the multimorbid relations among 439 common diseases. Post-GWAS analyses were performed to identify multimorbidity shared genetic risks at the genomic loci, network, as well as overall genetic architecture levels. We conducted network decomposition for the networks of genetically interpretable multimorbidities to detect the hub diseases and the involved molecules and functions in each module.

RESULTS

In total, 11,285 multimorbidities among 439 common diseases were identified, and 46% of them were genetically interpretable at the loci, network, or overall genetic architecture levels. Multimorbidities affecting the same and different physiological systems displayed different patterns of the shared genetic components, with the former more likely to share loci-level genetic components while the latter more likely to share network-level genetic components. Moreover, both the loci- and network-level genetic components shared by multimorbidities converged on cell immunity, protein metabolism, and gene silencing. Furthermore, we found that the genetically interpretable multimorbidities tend to form network modules, mediated by hub diseases and featuring physiological categories. Finally, we showcased how hub diseases mediating the multimorbidity modules could help provide useful insights for the genetic contributors of multimorbidities.

CONCLUSIONS

Our results provide a systematic resource for understanding the genetic predispositions of multimorbidities and indicate that hub diseases and converged molecules and functions may be the key for treating multimorbidities. We have created an online database that facilitates researchers and physicians to browse, search, or download these multimorbidities ( https://multimorbidity.comp-sysbio.org ).

摘要

背景

多种疾病大大增加了全球健康负担,但它们的遗传风险特征尚未得到系统研究。

方法

我们利用英国生物库 385335 名患者的住院数据,调查了 439 种常见疾病之间的多种共病关系。在全基因组关联分析(GWAS)后,我们在基因组、网络以及整体遗传结构水平上鉴定了与多种共病相关的遗传风险因素。我们对可遗传的多种共病网络进行网络分解,以检测每个模块中的核心疾病和涉及的分子及功能。

结果

总共鉴定出 439 种常见疾病中的 11285 种多种共病,其中 46%在基因座、网络或整体遗传结构水平上具有遗传解释力。影响相同和不同生理系统的多种共病具有不同的共享遗传成分模式,前者更有可能共享基因座水平的遗传成分,而后者更有可能共享网络水平的遗传成分。此外,多种共病的基因座和网络水平的遗传成分都集中在细胞免疫、蛋白质代谢和基因沉默上。此外,我们发现具有遗传解释力的多种共病倾向于形成网络模块,由核心疾病介导,并具有生理类别特征。最后,我们展示了介导多种共病模块的核心疾病如何帮助为多种共病的遗传贡献提供有用的见解。

结论

我们的研究结果为理解多种共病的遗传易感性提供了一个系统的资源,并表明核心疾病和集中的分子和功能可能是治疗多种共病的关键。我们创建了一个在线数据库,方便研究人员和医生浏览、搜索或下载这些多种共病(https://multimorbidity.comp-sysbio.org)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8915/8258962/d89de7d37e56/13073_2021_927_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验