Wirtanen Tom, Prenzel Tobias, Tessonnier Jean-Philippe, Waldvogel Siegfried R
Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
Department of Chemical and Biological Engineering, Iowa State University, 617 Bissell Road, Ames, Iowa 50011-1098, United States.
Chem Rev. 2021 Sep 8;121(17):10241-10270. doi: 10.1021/acs.chemrev.1c00148. Epub 2021 Jul 6.
The critical aspects of the corrosion of metal electrodes in cathodic reductions are covered. We discuss the involved mechanisms including alloying with alkali metals, cathodic etching in aqueous and aprotic media, and formation of metal hydrides and organometallics. Successful approaches that have been implemented to suppress cathodic corrosion are reviewed. We present several examples from electroorganic synthesis where the clever use of alloys instead of soft neat heavy metals and the application of protective cationic additives have allowed to successfully exploit these materials as cathodes. Because of the high overpotential for the hydrogen evolution reaction, such cathodes can contribute toward more sustainable green synthetic processes. The reported strategies expand the applications of organic electrosynthesis because a more negative regime is accessible within protic media and common metal poisons, e.g., sulfur-containing substrates, are compatible with these cathodes. The strongly diminished hydrogen evolution side reaction paves the way for more efficient reductive electroorganic conversions.
本文涵盖了金属电极在阴极还原过程中腐蚀的关键方面。我们讨论了其中涉及的机制,包括与碱金属合金化、在水性和非质子介质中的阴极蚀刻以及金属氢化物和有机金属化合物的形成。综述了已实施的抑制阴极腐蚀的成功方法。我们给出了一些有机电合成的例子,其中巧妙地使用合金而非纯软重金属以及应用保护性阳离子添加剂,使得这些材料能够成功用作阴极。由于析氢反应的高过电位,此类阴极有助于实现更可持续的绿色合成过程。所报道的策略扩展了有机电合成的应用范围,因为在质子介质中可以实现更负的电位范围,并且常见的金属毒物,例如含硫底物,与这些阴极兼容。析氢副反应的大幅减少为更高效的还原有机电转化铺平了道路。